
The objective of the problem is to minimise the overall cost of the network using the P-graph framework. The 
maximal structure of the problem obtained through the P-graph is depicted in Figure 2, and one of the 84 feasible 
structures which generate the optimal solution is shown in Figure 3.  
 

 
 

Figure 2: Maximal structure obtained through P-graph for the case study. 

 

Figure 3: 1st Feasible structure obtained through P-graph for the case study. 
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The optimal solution of the case study, which minimises the overall cost, is obtained to be 781.99 $/h, and the 
total resources corresponding to this solution is 202.21 t/h (29.04 from CR1, 100 from CR2, 20 from R1, and 
53.17 from R2). Using P-graph, n-best solutions can be obtained; some of the near-optimal solutions are listed 
in Table 2. It is to note that the cross-zonal transfer of flow from dedicated sources is not observed in any of the 
85 feasible networks which generate the first-best solution.  
The first solution presents the optimal cost, and it shows that the cross-zonal transfer is avoided to save the 
piping cost. It is also observed that the cross zonal flow slightly increases the overall cost to 782.32 $/h (the 
second-best solution). If the objective is to conserve the resources flow, the minimum resources flow achievable 
is 201.94 t/h, and different cost can be invested to build the network- see the solutions in 3rd, 9th, and 10th ranks 
in Table 2. In the 3rd solution, the network with optimum resources flow can be synthesised even without the 
cross-zonal transfer. This suggests that cross-zonal transfer is not encouraged and does not yield better 
resource conservation. However, this observation is dedicated to this case study only and does not apply in 
general. The results obtained using the P-graph approach are verified through mathematical optimisation, using 
the Excel solver. 

Table 2: 10 best solutions of the case study obtained using P-graph. 

N Overall resources (t/h) Overall cost ($/h) Cross-zonal connection 
1 202.21 781.99 No 
2 202.21 782.32 Yes, DS3 to D3 
3 201.94 782.54 No 
4 202.57 782.71 No 
5 202.79 782.76 No 
6 202.21 782.88 Yes, DS3 to D3 
7 202.37 783.08 Yes, DS3 to D3 
8 202.79 783.09 Yes, DS3 to D3 
9 201.94 783.10 Yes, DS3 to D3 
10 201.94 783.61 Yes, DS3 to D3 

4. Conclusions 

The P-graph approach for constrained segregated resource conservation network is addressed in this paper. 
Different constraints like multiple qualities, incorporation of common resources and dedicated sources, and cost 
associated with the cross-zonal transfer of flow from dedicated sources are considered in the holistic framework. 
It is concluded that these constraints and complexities in the segregated targeting problem can easily be 
addressed by P-graph in optimising the overall resource or cost. The advantage of the P-graph in generating 
the near-optimal solutions is exploited in the case study to generate different solutions. The cross-zonal transfer 
of flow is observed in different N-best solutions. The framework is applied using an illustrative case study, where 
85 feasible networks are obtained corresponding to the optimal solution. The minimum cost obtained is 782 $/h. 
The case study is limited to two qualities only, and more qualities can be included for a more realistic approach 
to the problem. 
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