
ammonia production. While the hydrogen produced was entirely utilized for ammonia production, only a part of 
the nitrogen produced was used. The rest of the nitrogen leaves the cluster as a waste stream, whereas the 
oxygen from the air separation and water splitting processes were sold along with the ammonia unused by urea 
production. Thus, the cluster generates revenues from ammonia, oxygen, and urea. 
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Figure 2: Schematic of the cluster generated for periods 1 and 2 

The third period yields two designs for both scenarios that are structurally similar as illustrated in Figure 3, but 
have different operational capacities as shown in Table 5. The primary difference between the first two periods 
and the third is the activation of the sequestration process to meet the stringent CO2 cap constraint and carbon 
tax. While revenues are still generated from ammonia, oxygen, and urea, the production of urea decreases by 
nearly 58%. The third period only permits 5% of the CO2 entering the cluster to leave, and since urea production 
leads to the release of emissions, only smaller operational capacities with corresponding lower emission levels 
are feasible. The loss in revenue from this decrease is made up by ammonia, whose cluster output was nearly 
doubled as much less is utilized for urea production. The slightly increased production of hydrogen and ammonia 
in Scenario 2, when comparing the third periods of both scenarios, stems from reducing the capital cost 
associated with the electrolyzer, which allowed for greater hydrogen production, and subsequently greater 
ammonia production. The decrease in capital costs was applied to both the second and the third periods. 
However, the decrease only furthered these productions in the third period, where there was a 20% decrease 
from the first, and did not lead to any changes in the second period, indicating that significant reductions are 
necessary to vary the design. 
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Figure 3: Schematic of the cluster generated for period 3 
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The methanol production process was not activated as a carbon sink in both scenarios owing to its high 
operating cost. Therefore, the case study emphasizes the importance of policy guidelines and cost efficiencies 
in the economic and environmental constraints of industrial clusters. 

4. Conclusion

The integration of multiple resources over multiple periods has been investigated in carbon converting networks 
with policy frameworks to achieve overall footprint reductions. The optimization problem utilizes mixed integer 
linear programming to optimize for overall profit across the periods considered and generated carbon-negative 
designs. The case study highlights the significant impact of both policies and process efficiencies on design 
strategies of industrial clusters using two scenarios. The first investigated policy schemes solely, while the 
second additionally investigated capital cost reduction on a cluster that must convert a minimum specified 
amount of CO2. The results indicate that stringent policy measures are necessary to elicit significant changes in 
designs of carbon converting networks. Furthermore, a significant reduction in investment costs is necessary 
for low-carbon energy systems like water electrolysis to generate profits. These observations imply that policy 
frameworks and process parameters must be simultaneously factored to allow policymakers to propose 
regulations and industrial park innovators to design clusters for the same objective. 
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