
𝑃𝑃(𝑪𝑪𝒏𝒏) = ∏ 𝑃𝑃(𝐶𝐶𝑖𝑖𝑛𝑛)𝑛𝑛
𝑖𝑖=1   (5) 

𝑓𝑓(𝑪𝑪𝒏𝒏) = 𝑓𝑓𝑃𝑃 × 𝑃𝑃(𝑪𝑪𝒏𝒏)  (6) 

where fP is the frequency of the primary Natech scenario generating the escalation. Overall consequence 
assessment is done by standardized procedures applied in the context of Natech and domino QRA (Antonioni 
et al., 2015). The calculation of risk indices is performed in agreement with previous works (Misuri et al., 2021a). 

5. Case study 
The methodology was applied to a case study. A primary Natech scenario involving an atmospheric tank T01 
storing gasoline (5000 m3) is assumed. Two targets are considered, one atmospheric tank T02 storing gasoline 
(5000 m3) and one pressurized vessel P01 storing ammonia (160 m3) are assumed. A set of conventional 
scenarios involving T01 is assumed to have baseline risk figures in analogy with (Misuri et al., 2021a). A severe 
flooding (f=2.0x10-3y-1, hw=2m, vw=1m/s) is chosen as reference natural event, and applying the model of 
Landucci et al. (2012) and considering 0.9 ignition probability, a primary pool fire with fP = 7.395x10-4y-1 is 
obtained. The set of safety barriers is reported in Table 2, together with the barrier analysis level selected from 
Figure 1 and the updated performance.  

Table 2: Equipment considered in the case study. In italics the item involved in the primary Natech scenario. 

Barrier  T02  P01  PFD0  η0  Level   PFDf  ηf 
Foam-water system (FWS)  X    5.42x10-3  9.54x10-1  L2  1.00  9.54x10-1 
Passive fire protection (PFP)    X  0  9.99 x10-1  L1  0  8.49 x10-1 
Water deluge system (WDS)    X  4.33x10-2  1.00  L2  1.00  1.00 
Emergency intervention (EEI)  X  X  1.00x10-1  0;1  n.a.  1.00x10-1  0;1 
In particular, the PFP is assessed by L1 applying the ϕ = 0.15 retrieved from Misuri et al. (2020), while the L2 
was applied both to the FWS and the WDS, demonstrating their expected unavailability during the reference 
natural event due to actuation failure, as shown in the FTAs reported in Figure 2. 

  

Figure 2: FTAs used for L2 analysis of the FWS (panel a) and the WDS (panel b). In red the nodes affected by 
the flood. Adapted from (Misuri et al., 2021a). 

The logical rules of Table 1 have been used in the ETA to assess secondary domino scenarios involving T02 
and P01. As benchmarks, also the best-case of barriers with baseline performance and the worst-case of 
absence of safety barriers have been considered, obtaining the results of Figure 3. As it can be seen comparing 
Figure 3-a and Figure 3-b, the LSIR obtained applying the approach of Section 3.3 for barrier assessment 
enabled a more realistic risk quantification. This is confirmed by the F/N curves of Figure 3-c, indicating that 
considering baseline barrier performance (best-case) would have led to an underestimation of risk, while 
assuming the absence of barriers (worst-case) would have led to possibly overconservative estimates.  
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Figure 3: Results obtained for the case study. LSIR contours obtained for: (panel a) the best-case (barriers with 
baseline performance) and (panel b) approach of Figure 1. F/N curves obtained for the case study (panel c). 

6. Conclusions 
A comprehensive framework to address the quantification of Natech risk considering safety barrier depletion is 
presented. A novel multi-level approach to update safety barrier performance during natural events is conceived. 
The methodology enables a more realistic quantification of Natech risk and is crucial to define strategies to 
enhance the capabilities of these systems also in light of possible effects of climate change. 
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