

VOL. 90, 2022

Guest Editors: Aleš Bernatík, Bruno Fabiano Copyright © 2022, AIDIC Servizi S.r.I. ISBN 978-88-95608-88-4; ISSN 2283-9216

DOI: 10.3303/CET2290064

Study on the Synergistic Effect of Multicomponent Gas Mixture on the Dynamic Characteristics of Gas Explosion

Jiancun Gao, Xigang Yang, Shoutao Hu*, Zijin Hong, Ruxia Li

School of Safety Engineering, Beijing Institute of Petrochemical Technology, Beijing, China hushoutao@bipt.edu.cn

With the development of industry and technology, multi-element gases coexist in many places. The study of the influence of appropriate concentration of flammable gas on the chemical kinetic characteristics of methane-air explosion is great significance for preventing and controlling gas explosions. An experimental system was set up to carry out different concentrations of C₃H₈/H₂/CH₄/air premixed gas explosion. The effects of multiple gases on the methane explosion characteristic parameters were studied. It is shown that the pressure peak firstly increases and then decreases with the increase of propane concentration when the $C_3H_8/CH_4/air$ mixture gas explosion experiment is carried out. The explosion of propane/methane/air mixture is most significant when the propane concentration is 0.4%. The experiment of H₂/CH₄/air mixed gas explosion was carried out. With the increase of H₂ concentration, the pressure peak increased gradually. In the experiment of C₃H₈/H₂/CH₄/air mixed gas explosion, the peak pressure firstly increases and then decreases with the increase of propane concentration. C₃H₈/H₂/CH₄/air mixture gas explosion is most significant when the concentration of C_3H_8 is 0.2% and the concentration of H_2 is 1%. The elementary reactions process were numerical simulated by CHEMKIN-PRO software. The micro-mechanism of multi-element gas explosions based on key radicals, sensitivity and reactions paths. Reaction step R38: H+O₂<=>O+OH and R53: $H+CH_4 <=> CH_3+H_2$ to affect the explosion process. $0.1\%C_3H_8+1\%H_2$ and $0.2\%C_3H_8+1\%H_2$ will accelerate the CH₄/air premixed gas explosion reaction rate, 0.3%C₃H₈+1%H₂ will inhibit the methane/air premixed gas explosion reaction rate. It is mainly because R312 elementary reaction at this concentration: $CH_3+C_2H_5(+M) \le C_3H_8(+M)$ dominates the explosion, inhibiting R38 elementary reaction: $H+O_2 \le O+OH$, reducing OH the amount of production, thereby inhibiting the explosion process. The research results have important practical value for preventing and controlling multi-element gas explosion accidents and reducing accident losses.

1. Introduction

With the rapid development of science and technology, complex multi-element gases are widely present in industries such as coal mines, petrochemicals, metallurgy and pharmaceuticals, underground spaces and laboratories. The multi-element gas in coal mines and underground spaces is mainly methane, and contains other elements. Studying the influence of the appropriate concentration of combustible gas on the chemical kinetic characteristics of methane-air explosion and analyzing the laws of multi-element gas explosion are of great significance to the prevention and control of gas explosions. Scholars' research on multi-systems is mainly divided into three aspects: the mixture of methane and dust, methane and combustible gas, and methane and inert gas. (Pinaeva et al., 2020) proved that in the hybrid systems studied, coal combustion competes with methane combustion, but methane is chemically more active than coal. Methane, rather than coal carbon has a decisive influence on the parameters of combustion and detonation waves. (Li et al., 2012) found with appropriate hydrogen and methane ratio, the lower explosion limits of the mixtures are even smaller than that of each component gases. (Wang et al., 2021) reported montmorillonite powders inhibitors generated NH4, NCO, and OH which can interrupt explosion chain reactions to suppress methane explosion. (Wang et al., 2020) studied CO may increase the collision frequency and make the chain initiation reaction of CH4/CO/C2H6/H2/air mixtures easier than CH4/air mixtures. (Liang et al., 2019) analysed the nonlinear effect shows that HO₂ recombination is important at high H₂ conditions, while the interaction of HO₂ and CH₃

Please cite this article as: Gao J., Yang X., Hu S., Hong Z., Li R., 2022, Study on the synergistic effect of multicomponent gas mixture on the dynamic characteristics of gas explosion, Chemical Engineering Transactions, 90, 379-384 DOI:10.3303/CET2290064

dominates when the H₂ concentration in the fuel mixture is relatively low. (Luo et al., 2019) proposed the key radicals OH and CH₂O show a high degree of correlation, with CH₂O being more susceptible to oxygen content than OH during the reaction process. (Tan et al., 2020) the addition of CH₄/CO₂/O₂ significantly decreased the minimum ignition temperature of dust, and the minimum ignition temperature of hybrid mixture was inversely proportional to the increase of gas mole fraction. (Chang et al., 2020) measured the effect of CO₂ dilution dominating the explosion behavior becomes more apparent than N₂ dilution. (Zhao et al., 2020) pointed out the inhibition effect of CO₂ was found to be stronger than N₂ due to its higher specific heat, but the addition of 1.14% CH₄ can offset the inhibition effect of CO₂ somehow. (Wang et al., 2020) discovered the extrema of these explosion parameters are found to be at $\leq \varphi 1.0$.

2. Experimental apparatus, methods and materials

The experimental system is composed of experimental pipeline, transient pressure acquisition devices, gas distribution systems, and ignition devices. A schematic of this system is shown in Figure 1.

Figure 1: Schematic of gas explosion experiment device

As shown in the schematic in Figure 1, the cylindrical experimental pipeline of length 1000mm, inner diameter of 100mm and thickness of 6mm is pressure-resistant pipeline and equipped with a bursting disc. Three pressure sensors are installed in the pipeline to measure the pressure at different positions. The No. 1 pressure sensor was set to 30 cm from the ignition end, and the No. 2 pressure sensor was set to be 30 cm away from sensor No. 1 in a horizontal direction. Pressure sensor No. 3 was set to 30 cm in a horizontal direction. Pressure sensor No. 3 was set to 30 cm in a horizontal direction. The software was set to a collection frequency of 80 kHz, that is, 80 times/ms of data collection. The process was operated using measurement software. The gas distribution system includes vacuum pump, circulating pump and two valves. The ignition system consists of a high-energy igniter instrument and an ignition head. The ignition head is located at left of pipeline. The experimental gas materials include CH₄, C_3H_8 , H_2 and synthetic air with a purity of 99.9999 %.

Chapter 2 All experiments were carried out at room temperature and normal pressure. The experimental steps are as follows: The gas seal of the experimental system was checked. A vacuum of <667 Pa (according to GB/T 12474–2008) was established in the experimental pipeline by the vacuum pump, and the pressure remained unchanged within 5 min as observed through a pressure gauge, which indicated that the experimental instruments were appropriate for the experiment. The combustible gas of calculated volume was injected into the pipe in the vacuum environment, and then synthetic air was injected into the pipe until atmospheric pressure. The gas in the pipe was mixed for 2 min by the circulation pump and standing for 5 min to ensure uniformity mixing gas according to the law of Dalton partial pressure method with an accuracy of 0.1%. The combustible gas is ignited by the ignition system, and the pressure data are collected. The residual gas in the pipeline was treated harmlessly by physical (adsorption) and chemical (catalytic combustion) methods to avoid polluting the atmosphere.

3. Results analysis

The explosion pressure of CH₄/C₃H₈/H₂/air premixed multicomponent gas was shown in Figure. 2.

380

Figure 2: multicomponent gas explosion pressure under different working conditions

It can be seen from Figure. 2a that with the increase of C_3H_8 concentration, the explosion pressure of CH_4 shows a trend of first promoting and then inhibiting. The explosion pressure of C_3H_8/CH_4 / air mixture was the largest and increased 16.369% when the C_3H_8 concentration was 0.4%. When the C_3H_8 concentration was 0.8%, the explosion pressure was the same as the blank group. When the C_3H_8 concentration exceeds 0.8%, the explosion pressure decreases greatly.

It can be seen from Figure. 2b that the H₂ concentration was positively correlated with the explosion pressure of the multicomponent gas. The greater the H₂ concentration was, the greater the explosion pressure was. When the H₂ concentration was 1%, the explosion pressure increased the fastest, rising by 23.77%. With the increase of H₂ concentration, the rise was indeed gentle. When the H₂ concentration reached 4%, the explosion pressure of the mixed gas increased by 34.43% compared with the blank group.

It can be seen from Figure 2c that in the $C_3H_8/H_2/CH_4/air$ mixture, the concentration of C_3H_8 was changing, the concentration of H_2 was 1%, and the concentration of CH₄ was 9.5%. With the increase of C_3H_8 concentration, the peak explosion pressure first increased and then decreased. Compared with the blank group, the addition of C_3H_8 and H_2 still promoted the explosion pressure. When the propane concentration was 0.2%, the peak explosion pressure increased by 17.21%.

4. Simulation analysis

The simulation software was Chemkin-pro, and the mechanism file was GRI Mech 3.0 of Hai Wang team. (Wang et al., 2007) The closed homogeneous Batch Reactor model was used to simulate the transient gas reaction. The blank group and the three conditions of adding $0.4\%C_3H_8$, $4\%H_2$ and $0.2\%C_3H_8$ +1%H₂ were simulated. Because these three conditions had the greatest promotion effect on CH₄ explosion pressure.

Table 1: simulated conditions

Figure 3: volume fraction of reactants under different working conditions

It can be seen from Figure 3 that the residual amount of CH₄ in the blank group was the least. After the addition of 0.4% C₃H₈, the residual amount of CH₄ increased, indicating that in C₃H₈/CH₄/air multivariate gases, C₃H₈ would be preferentially consumed, and then CH₄ was consumed. The addition of H₂ also increased the CH₄ residue, proving that H₂ reacted earlier than CH₄ in the H₂/CH₄/air multicomponent system. When C₃H₈ and H₂ were homochromous added, the remaining amount of C₄ increased, and the remaining amount of C₃H₈ also increased, indicating that in the multi-system of C₃H₈/H₂/CH₄/air, H₂ reacted preferentially than C₃H₈.

Figure 4: CH₄ ROP under different working conditions

Positive represented the elementary reaction to produce CH₄, negative represented the elementary reaction to consume CH₄. It can be seen from Figure 4 that the first five elementary reactions of CH₄ explosion reaction were the same, but the reaction rates were different. R88·CH₃+·H= CH₄ and R101·CH₃+·CH₂O=CH₄+·HCO generated CH₄. R123CH₄+·O=·CH₃+·OH, R124CH₄+·H=·CH₃+H₂ and R125CH₄+·OH=·CH₃+H₂O were the main reaction of CH₄ consumption. CH₄ collided with massive ·H, ·O, ·OH to generated ·CH₃ and other products. The addition of C_3H_8 reduced the reaction rate of R88 and increased the reaction rate of R101. The addition of C₃H₈ and H₂ decreased the reaction rates of R123, R124 and R125, indicating that the addition of C_3H_8 and H_2 inhibits the CH₄ consumption reaction. It is considered that H_2 and C_3H_8 preferentially reacted with O₂, resulting in an increase in CH₄ residue.

5c 4%H₂+9.5%CH₄

Figure 5: O sensitivities analysis under different working conditions

The addition of C₃H₈ and H₂ increased O₂ consumption, and the ·O sensitivity was analysed. The sensitivity coefficient was positive to promote O generation, that was, to promote explosion, while the negative was the opposite. It can be seen from Figure 5a that R1, R93, R96, R104 and R123 had great influence on O R93·CH₃+O₂=·O+·CH₃O had the greatest positive effect on O sensitivity and sensitivity. R96·CH₃+·HO₂=·OH+·CH₃O also has a greater positive impact on O, indicating that \cdot CH₃O promoted \cdot O and in turn promoted explosion. R104·CH₃+·CH₃=C₂H₆ was the chain termination reaction and produced larger molecular weight alkanes, which had the greatest negative impact on O sensitivity, indicating that R104 inhibits explosion.

It can be seen from Figure 5b that the elementary reaction with the greatest positive impact on O sensitivity changed from R93 CH₃+O₂=·O+·CH₃O to R1·H+O₂=·O+·OH after the addition of C₃H₈. C₃H₈ reacted with O₂ preferentially than CH₄. C₃H₈ decomposed into ·C₃H₇ and ·H, and O₂ decomposed into ·O. The addition of C_3H_8 increased the amount of CH₄ residue. This indicated that the reaction rate of \cdot CH₃ decreased, and the sensitivity of R93 and R96 to O decreased. CH₃O still had the positive impact on O sensitivity.

It can be seen from Figure 5c that compared with blank group, the elementary reaction with the greatest positive impact on O sensitivity changed from R93 to R1 after the addition of H2. The sensitivity coefficient of R3·OH+H₂=·H+H₂O and R125CH₄+·OH=·CH₃+H₂O also increased. The number of \cdot H, \cdot O and \cdot OH increased. R96 still had positive impact on O sensitivity. R125 was the chain transfer reaction, from simple OH into CH₃. R125 had the negative impact on O sensitivity, indicating that R125 inhibits explosion.

It can be seen from Figure 5d that the elementary reaction with the greatest positive impact on O sensitivity changed from R93 to R1 when C₃H₈ and H₂ were added simultaneously. R104 still had the greatest negative impact. This indicated that R1 promoted explosion and R104 inhibited explosion. R96 still had positive impact on ·O, sensitivity indicating that ·CH₃O still had the positive impact on ·O sensitivity. The addition of H₂ and C₃H₈ or the addition of H₂ both increased the sensitivity coefficient of R125, and the priority of H₂ reaction was higher than that of C₃H₈, indicating that the main reason for the increase of R125 sensitivity coefficient was the addition of H₂.

5. Conclusions

The addition of appropriate amount of C₃H₈ and H₂ in CH₄/air promoted CH₄ explosion, and 0.4% C₃H₈ had the largest promotion effect on CH₄ explosion. The higher the H₂ concentration, the more obvious the promotion effect of CH₄ explosion. The addition of 0.2% C₃H₈ and 1% H₂ had the greatest promotion effect on CH₄ explosion.

In the C₃H₈/H₂/CH₄/ air premixed multivariate gas, the reaction priority of H₂ was higher than C₃H₈, and that of C₃H₈ was higher than CH₄.

Elementary reaction $H+O_2 \le O+OH$ promoted explosion and $CH_3+CH_3=C_2H_6$ inhibited explosion. In addition, ·CH₃O was the important free radical in the explosion process and promoted the explosion.

Different concentrations and types of gases may have different effects on gas explosion reaction. The explosion reaction mechanism of multiple gases is a complicated topic. Therefore, the authors will continue to perform in-depth research in this direction.

Acknowledgments

This research is supported by the science and Technology Plan Project of Beijing Municipal Education Commission (KM201910017001) and Beijing Natural Science Foundation, Youth Project (No. 2214071).

References

- Chang, X.Y., Zhang B, Ng H.D., Bai C.H., 2020. The effects of pre-ignition turbulence by gas jets on the explosion behavior of methane-oxygen mixtures. Fuel, 277.
- Li Q.Z., Lin B.Q., Dai H.M., Zhao S, 2012. Explosion characteristics of H₂/CH₄/air and CH₄/coal dust/air
- mixtures. Powder Technology , 229, 222-228. Liang W.K., Liu Z.R., Law C.K., 2019. Explosion limits of H₂/CH₄/O₂ mixtures: Analyticity and dominant kinetics. Proceedings of the Combustion Institute, 37 (1), 493-500.
- Luo Z.M., Su B, Li Q, Wang T, Kang X.F., Cheng F.M., Gao S.S., Liu L.T., 2019. Micromechanism of the Initiation of a Multiple Flammable Gas Explosion. Energy & Fuels, 33 (8), 7738-7748.
- Pinaev A.V., Pinaev P.A., 2020. Combustion and Detonation Waves in Gas Mixtures of CH₄/Air, CH₄/O₂, and O₂/Coal Dust. Combustion, Explosion, and Shock Waves, 56 (6), 670-681.
- Tan X, Schmidt M, Zhao P, Wei A, Huang W.X., Qian, X.M., Wu D.J., 2020. Minimum ignition temperature of carbonaceous dust clouds in air with CH₄/H₂/CO below the gas lower explosion limit. Fuel, 264.
- Wang Y, Lin S, Feng H, Ji W.T., Ma H.Y., Zhang Y.M., 2021. Suppression of different functional group modified powders on 9.5% CH₄-air explosion and molecular simulation mechanism. Journal of Loss Prevention in the Process Industries, 69.

Wang H, Gu S, Chen T, 2020. Experimental Investigation of the Impact of CO, C₂H₆, and H₂ on the Explosion Characteristics of CH4. ACS Omega, 5 (38), 24684-24692.

- Wang H.H., Ma H.H, Shen Z.W., 2020. Explosion characteristics of H₂/N₂O and CH₄/N₂O diluted with N2. Fuel, 260.
- Wang H, YOU X.Q., AMEYA V.J., Scott G.D., Alexander L, Fokion E, Chung K.L., 2007. USC Mech Version High-Temperature Combustion Reaction Model of $H_2/CO/C_1-C_4$ Compounds[DB]. Ш http://ignis.usc.edu/USC Mech II.htm.
- Zhao P, Tan, X, Schmidt M, Wei A, Huang W.X., Qian X.M., Wu D.J., 2020. Minimum explosion concentration of coal dusts in air with small amount of CH₄/H₂/CO under 10-kJ ignition energy conditions. Fuel, 260.

384