
the evaluation of the effect of hydrogen on the reactivity of bio-derived fuels, pure CH4 as well as its binary 
mixtures with CO and CO2 were also investigated, for the sake of comparison. 

Table 1. Summary of the fuel composition investigated in this work expressed as a volumetric percentage. 
Mixture CH4 [%v/v] CO [%v/v] CO2 [%v/v] H2 [%v/v] 
Mix 1 100 0 0 0 
Mix 2 90 0 0 10 
Mix 3 80 0 0 20 
Mix 4 90 10 0 0 
Mix 5 80 20 0 0 
Mix 6 80 0 20 0 
Mix 7 50 0 50 0 
Mix 8 60 0 20 20 
Mix 9 40 0 40 20 
Mix 10 70 10 0 20 
Mix 11 60 20 0 20 
Mix 12 40 20 20 20 
 
Results will be also expressed in terms of equivalence ratio (ϕ, Equation 1) at LFL and UFL: 

𝜑𝜑 =  ∑
�𝐹𝐹𝑖𝑖𝑂𝑂2

�

�
𝑓𝑓𝑖𝑖
𝑜𝑜𝑜𝑜�

𝑖𝑖  (1) 

where F and O2 respectively represent the volumetric fraction of the i-th fuel species and oxygen in the unburned 
mixture, whereas f and ox stand for the stoichiometric coefficients of the i-th fuel and oxygen in the reaction of 
complete oxidation. Under these premises, in this work CH4, CO, and H2 were considered as fuels species, 
only. Hence, the variations in terms of flammability limits with respect to Mix 1 (Δ) for the j-th mixture were 
calculated as defined in Equation 2, distinguished for LFL and UFL to represent in both cases an increase in 
reactivity for positive values. 

𝛥𝛥𝑗𝑗 = �∑ 𝐹𝐹𝑖𝑖,𝐿𝐿𝐿𝐿𝐿𝐿,𝑀𝑀𝑀𝑀𝑀𝑀 𝑗𝑗𝑖𝑖 � − 𝐹𝐹𝐿𝐿𝐿𝐿𝐿𝐿,𝑀𝑀𝑀𝑀𝑀𝑀 1 𝛥𝛥𝑗𝑗 = −�∑ 𝐹𝐹𝑖𝑖,𝑈𝑈𝐹𝐹𝐹𝐹,𝑀𝑀𝑀𝑀𝑀𝑀 𝑗𝑗𝑖𝑖 � + 𝐹𝐹𝑈𝑈𝑈𝑈𝑈𝑈,𝑀𝑀𝑀𝑀𝑀𝑀 1 (2) 

3. Results and discussion 
Figure 1 and Figure 2 report the flammability limits numerically estimated in this work for the fuel compositions 
considered in Table 1 in presence of air at 300 K and atmospheric pressure, expressed in terms of a ternary 
plot. For the sake of clarity, species other than CH4 composing the fuel mixtures (i.e., CO, CO2, and H2) were 
grouped under the nomenclature “Other species”. A comparison of equivalence ratios and CH4 contents at LFL 
and UFL (Table 2) was included. 

Table 2. Equivalence ratio (ϕ) and CH4 content at lower and upper flammability limits as estimated using the 
detailed kinetic mechanism as a function of the initial fuel composition. 
Mixture ϕ @ LFL CH4 @ LFL[%v/v] ϕ @ UFL CH4 @ UFL [%v/v] 
Mix 1 0.422 4.24% 2.510 20.86% 
Mix 2 0.433 4.22% 2.504 19.92% 
Mix 3 0.444 4.16% 2.493 18.83% 
Mix 4 0.432 4.21% 2.467 19.69% 
Mix 5 0.444 4.16% 2.420 18.41% 
Mix 6 0.429 4.26% 2.511 19.83% 
Mix 7 0.446 4.28% 2.515 17.28% 
Mix 8 0.423 3.83% 2.464 17.08% 
Mix 9 0.408 3.48% 2.435 14.49% 
Mix 10 0.442 3.96% 2.447 17.43% 
Mix 11 0.444 3.75% 2.405 15.91% 
Mix 12 0.447 3.43% 2.362 13.26% 
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Figure 1. Estimation of the flammability limits of CH4:CO:CO2:H2 mixtures defined in Table 1 in the air at 300 K 
and 1 atm. 
 

 
Figure 2. Comparison of the effects of initial composition on flammability limits of CH4:CO:CO2:H2 mixtures 
defined in Table 1 in the air at 300 K and 1 atm. 
 
The application of the described approach has led to the LFL and UFL respectively equal to 4.24%v/v and 
20.86%v/v for pure CH4. These estimations represent slightly conservative results with respect to experimental 
data available in the current literature (Coward and Jones, 1952)(Zlochower and Green, 2009), possibly 
attributable to the assumption of perfectly adiabatic conditions posed for the numerical analysis. Although 
CH4.content at LFL is slightly affected by the fuel composition, the fraction of flammable gases at the 
corresponding compositions variates from 3.7 %v/v up to 6.9 %v/v. Regardless of the added fuel species, similar 
LFL can be observed for the binary mixtures investigated in this work. This means that the potential abundance 
of hydrogen radicals in Mix 2 and Mix 3 does not lead to a boost of hydrogen abstraction, mainly responsible for 
the production of radicals and, thus of the ignition at lean compositions. Besides, the CH4 content at LFL slightly 
decreases, but it is compensated by the added fuel, resulting in higher LFL, i.e., less ignitable mixtures. This 
result can be considered counterintuitive, at first, if compared with the overall reactivity. Indeed, either H2 or CO 
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is characterized by considerably faster Su than CH4, then an increase in the overall reactivity may be expected. 
However, their addition has a larger impact on the Su,lim than Su, causing the observed trend. These observations 
indicate the limited impact of the chemistry of the secondary fuels on the ignitability of CH4 if additivities are 
limited at ≤ 20 %v/v, thus confirming the existence of a methane-dominated chemical regime. Conversely, larger 
UFL can be observed for Mix 2 and Mix 3 with respect to the homologous mixtures containing CO (i.e., Mix 4 
and Mix 5). Besides, it is worth noting that these mixtures show significantly larger UFL than Mix 1. However, if 
the CH4 content and equivalence ratio at UFL are considered, the highest value is observed for Mix 1. From a 
chemical point of view, these trends testify that the interactions between ignition mechanisms of the investigated 
fuels species are low. From a safety point of view, this observation may suggest the utilization of the equivalence 
ratio as a stand-alone parameter to characterize the ignitable region in the case of stratified mixtures containing 
different fuel species. In other words, a conservative approach for the determination of flammable areas of 
gaseous mixtures may consider the equivalence ratio at LFL and UFL of the main fuel (i.e., CH4 in this case), 
i.e., 0.42 and 2.51 in this case. Indeed, either the CH4 fraction or the estimated LFL for the mixtures cannot 
guarantee a conservative approach on the safe side for all the investigated conditions.  
The addition of CO2 to pure CH4 (i.e., Mix 6 and Mix 7) produces negligible effects on the estimated LFL and 
reduces significantly the UFL. These data are in line with the ones published by Chen et al. (2009) (Chen et al., 
2009) on the inertisation of methane at ambient conditions. The differences in the abovementioned trends are 
commonly attributed to the variation of relative weights of thermal and radical aspects on the ignition. In other 
words, LFL is usually assumed as determined by thermal aspects, thus the variation in thermal inertia of the 
initial gaseous stream is the main responsible for LFL. Alternatively, UFL is typically considered as ruled by the 
chemistry of radical species and termination reactions. Hence, in this case, the presence of CO2 mainly impacts 
UFL by shifting the equilibrium toward uncompleted oxidation and, thus, modifies the kinetic rates and produced 
heat. However, the equivalence ratio at UFL is almost unchanged for these mixtures, meaning that the CH4/O2 
resulting in the ignition is unaltered by inertization up to 50 %v/v of CO2.  
The results reported for ternary and quaternary mixtures investigated in this work show that the simultaneous 
presence of CO2 and H2 has a larger echo on the LFL and UFL. In this sense, it is worth noting that usually the 
formation of CO2 in combustion systems is attributed to the reaction R1: CO + OH ⇋ CO2 + H. Furthermore, the 
relevance of CO2 acting as a third body for the production of HO2, namely the reaction R2: H + O2 (+CO2) ⇋ 
HO2 (+CO2), has been already reported for gaseous mixtures including the investigated species (Lee et al., 
2017). Hence, it is legitimate to assume that the formation of OH and HO2 is enhanced by the presence of CO2 
due to the reverse reaction of R1 and direct R2, being either CO2 or H largely available for Mix 8, Mix 9, and 
Mix 12. The supposed increase in the OH and HO2 fractions turns in easier ignition at respectively intermediate 
and low temperatures, following the classical theory of combustion (Law, 2006).  

4. Conclusions 
This work presents a numerical investigation on the reactivity of gaseous mixtures containing hydrogen, 
potentially representative for bio-derived streams. A detailed kinetic mechanism was used for the evaluation of 
the laminar burning velocity at extremely lean and rich compositions, aiming at the quantification of lower and 
upper flammability limits at atmospheric conditions through the limiting laminar burning velocity theory. To this 
scope, binary, ternary, and quaternary mixtures of CH4, CO, CO2, and H2 were investigated. The effects of initial 
fuel compositions on the flammability limits in the air were discussed. Observed differences were discussed 
given elemental reactions involving the added species and possibly determining a significant variation in the 
estimated parameters. This analysis was intended as support for the sake of accurate characterization of 
accidental release of gaseous mixtures containing different fuels. Indeed, an alternative approach for the 
identification of flammable regions in the case of stratified mixtures, such as the ones resulting from an 
accidental release, was proposed. 
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