
 

  

Figure 5: left: Hydrogen concentration profiles measured above the point of release (release rate 0.8 kg/s), right: 
pressure reading in air at a distance of ~10 m from release position for test 2 of trial 021  

 

Figure 6: Moment of initial flame propagation in hydrogen-air clouds (“white spots”) generated by releases of 
LH2 onto and under water. The ignition location appears to be somewhere in the cloud at a distance from any 
physical object. The locations of the release point (cryo hose) and measuring rack/bridge have been indicated. 

 

 

Figure 7: Heat radiation measurements during a test where 4 releases of 0.8 kg/s were established.  
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6. Conclusions 
An experimental investigation performed at large-scale releasing 0.25 kg/s to 0.8 kg/s of LH2 onto and under 
water showed that RPTs, as seen when releasing LNG onto water, do not occur. A violent and fast evaporation 
of LH2 does occur upon injection into water. Pressure waves due to the impact and the evaporation process are 
in the mbar range, and are not dangerous and will not cause any damage or risk to personnel. 
A flammable cloud is generated above the water surface which in almost all release scenarios investigated 
ignited. The ignition occurs in free air, and no ignition source has yet been identified. The ignition of the cloud 
caused considerable blast pressure both above and under water which can cause significant damage in the 
near field. Further analysis of the experimental results will be performed to draw more conclusions of the 
experimental campaign. 
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