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Climate change has contributed to an increasing frequency and severity of natural hazards accidents over recent 

years, and the increasing trend is expected to continue and escalate. Globally, demographics are changing and 

urbanization, population growth and increasing coastal populations make societies more exposed and 

vulnerable to extreme weather events. As a consequence, attention towards natural disasters is increasing 

along with the interest in approaches to manage emerging risks. Some industries have been experiencing major 

losses to hazards, while others might be hit harder in the future.  

Current research shows that there is a need to further investigate underlying reasons for variations in disaster 

timing, impacts, and outcomes, as well as mitigation strategies. The purpose of this research is to enhance the 

understanding of natural disaster mortality and unravel underlying causes and influential factors that can inform 

decision-making and be relevant for risk reduction efforts. This is achieved by analyzing natural hazards 

accidents data and using data science techniques to define data clusters and delve into the related factors 

affecting mortality. The climate-driven, natural disaster events from the International Disaster (EM-DAT) 

database have been thoroughly explored and visualized to obtain an overview of the current natural disaster 

situation. More specifically, this manuscript concerns the development of clustering algorithms and analytics to 

map fatalities and economic damage. The results of the analysis showed the extent to which climate change 

has a significant effect on resulting fatalities and economic losses from natural hazards accident scenarios. 

Besides the achieved results of this work, it is acknowledged how further studies should try to dynamically 

represent vulnerability as well as improve the quality and selection of integrated features to improve the 

representation of industrial aspects. 

1. Introduction 

Data analysis of natural hazards accidents can aid risk management by shedding light on disaster 

characteristics, challenges, differences amongst regions, and similar events. Natural hazard management 

denotes the systematic actions focused on reducing the negative effects of disasters (Department of Regional 

Development and Environment Executive Secretariat for Economic and Social Affairs, 1991). Mitigation 

measures contribute to natural hazard management by minimizing, monitoring, and reducing the probability of 

severe consequences, the corresponding avoidable impacts, and the unfortunate outcomes of natural hazards 

(Sarkar and Maiti, 2020). The risk for individuals inflicted by natural hazard disasters differs based on societal 

vulnerability and exposure, and environmental conditions (ISDR, 2009). Climate change has forced more than 

20 million people to move from their homes each year (Masika, 2013). The development level of a country might 

affect the consequences of a natural disaster. It is often remarked how those living in poverty are hardest hit 

despite being the least responsible for climate change. 

The increasing frequency of natural hazards led to greater attention worldwide devoted to mapping and reducing 

natural risks (Cruz et al., 2006), unraveling and explaining potential impacts on societies. Vulnerability in this 
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context can be a risk factor, but also an outcome: disaster exposure may lead to poverty causing damage to 

assets and livelihoods (Suarez-Paba and Cruz, 2022). Besides, larger natural disasters often cause extensive 

property damages and a high number of fatalities. Research has shown that natural disaster-related damages 

and mortality have increased in the past decades (Jacobsson et al., 2009; Masika, 2013). 

Research is needed to develop systematic approaches on disaster causes and impacts to improve responses, 

and anticipation capacity and design risk prevention and mitigating interventions prior to, or following major 

natural hazards verification. The International Disaster Database (EM-DAT) developed by the Centre for 

Research on the Epidemiology of Disasters (CRED) gathers data on natural disasters and maps them into 

different classification categories, impacts, and causes. This paper aims to study these climate-driven accidents 

in terms of societal impact, both on populations and properties, as they can be of relevance for industrial systems 

as well. The manuscript fully relies on EM-DAT and proposes a Machine Learning (ML) algorithm to investigate 

potential clusters of countries that show commonalities and subsequently can drive to common natural risk 

management mitigations. The focus of this manuscript spans from natural hazards accidents to technological 

accidents in order to ensure a wider perspective on all societal impacts. 

2. Materials and Methods 

2.1 Exploring the database 

The EM-DAT database was created following the 1980's investigation by the Centre for Research on the 

Epidemiology of Disasters (CRED). The study was carried out to serve the purposes of humanitarian action at 

national and international levels. The initiative aimed to rationalize decision-making for disaster preparedness, 

as well as provide an objective base to assess vulnerability and set priorities. The database is compiled from 

various sources, including United Nations agencies, non-governmental organizations, insurance companies, 

research institutes, and press agencies (e.g.), United Nations Department of Humanitarian Affairs (UN-DHA), 

European Union Humanitarian Office (ECHO), International Federation of the Red Cross and Red Crescent, the 

Office of Foreign Disaster Assistance (OFDA-USAID), International Committee of the Red Cross and Red 

Croissant (ICRCRC, Switzerland), International Decade for Natural Disaster Reduction (IDNDR) (Center for 

research on the Epidemiology of Disasters, 2021). Currently, EM-DAT collects more than 25000 disasters 

between 1900 - 2020. All the events in the EM-DAT database fulfill one or more of these entry criteria (Center 

for research on the Epidemiology of Disasters, 2021):  

- Kill (10 or more deaths) 

- Affect (100 or more people affected, injuries or homeless) 

- Declaration/Appeal (declaration by the country of a state of emergency and/or appeal for international 

assistance) 

The 25000 incidents worldwide involve 189 countries, distributed as follows:  

- About 15000 accidents are related to natural impacts (e.g., drought, extreme temperature, flood, 

landslide, storm, wildfire, etc.),  

- About 10000 accidents refer to technological impacts (i.e., industrial, transport, and miscellaneous 

impacts).  

The database incorporates 43 parameters (e.g., location, date, damage, fatalities, disaster type, origin, 

reconstruction cost, insured damage, appeal, impacts) to fully details the characteristics of the accident and 

allow the accident identification and analysis (Center for research on the Epidemiology of Disasters, 2021).  

2.2 Data clustering through Machine Learning 

Machine learning (ML) is known for providing meaning to raw data and solving practical problems in a reliable 

and efficient way. These problems require machine assistance since the amount of data and the complexity of 

the statistical patterns imply that humans would not be able to solve them via traditional techniques (Burkov, 

2019). ML algorithms learn from examples and are thereby trained to find patterns that can help make decisions 

and predictions based on new, unseen information (Sharda et al., 2019). A ML pipeline includes training, test, 

and validation processes. One example of ML refers to clustering. This latter is used to uncover meaningful 

groups within a dataset based on underlying patterns or structures. Clustering is commonly used for 

dimensionality reduction and the most common methods are density-based, hierarchical, partition-based, and 

grid-based methods. This descriptive data mining technique is unsupervised since there are no target values to 

predict (Murtagh and Contreras, 2012). The clustering algorithm relies on a distance matrix that is created by 

computing the distance between every pair of data points. For this reason, a clustering algorithm requires 

standardized, numerical input.  
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K-Means Clustering 

K-Means is one of the most frequently used and effective clustering algorithms, as proved by results obtained 

in several diverse application contexts (Zhang et al., 2017). K-Means is a general-purpose clustering method  

preferred for data where a flat geometry. The algorithm tries to group data by minimizing the within-cluster-sum-

of-squares which represents the distance between each data point and the cluster centroid (Chen et al., 2005). 

The most common metric to compute distances in K-Means is the Euclidean distance, as it is flexible to 

accommodate different operational situations. Another characteristic of the algorithm is that it requires an explicit 

specification of the resulting number of clusters. The algorithm will always converge, but it is vulnerable to local 

minima. This will depend on how centroids are initialized. By running the algorithm with a specified number of 

clusters 𝑘, 𝑘 random samples from the dataset are allocated as cluster centroids. The main steps of the K-

Means clustering algorithm are: 

- Initialization: the step to choose k initial centroids 

- Looping: the iterative step to stabilize centroids, until a certain threshold is reached, or a certain number 

of iterations has been run. This loop requires two sub-steps: 

o Assigning samples to their nearest centroid based on a selected distance measure. 

o Compute the mean of the assigned samples and create a new centroid. 

K-Means with Euclidean distance has been used to map countries’ clusters as they appear in the EM-DAT 

database. 

3. Results 

The clustering algorithm allowed splitting the 189 countries involved in natural hazard accidents into 40 clusters 

of varied sizes. The algorithm runs on a set of selected features presented considered relevant for the scope of 

the analysis: Disaster ID; Country; Location; Year; Disaster group; Disaster subgroup; Disaster type; Event 

name; Total death; Total damages. The chosen algorithm relies on a distance matrix created computing the 

distance between every pair of data points. The algorithm has been performed to group data minimizing the 

within-cluster sum of squares, which represents the distance between each data point and the cluster centroid.  

Clusters must be validated to check the logical cohesion between the clustered items and to compare the 

separation among them. A useful metric for validating the significance of clusters is the silhouette, whose scores 

represent the distance from one sample to the samples in the neighboring clusters (Kingrani et al., 2017). 

Silhouette coefficients range between -1 and 1 where values close to 1 indicate high compactness within the 

cluster, which in turn implies longer distances among the sample and the neighboring clusters. Silhouette scores 

close to 0 indicate overlapping clusters, while negative values indicate a possible misplacement of the sample 

(Milligan and Cooper, 1985). When examining the obtained results, for demonstration purposes, this manuscript 

details only the two clusters presenting the higher cumulative number of fatalities. On this basis, cluster 12 

(Poland, Germany, Japan, Vietnam, Bangladesh, and South Korea) and cluster 32 (Pakistan, Afghanistan, Iran, 

Nepal, Sri Lanka, Turkey, Romania, Algeria, and Yemen) being identified have been selected for further 

explorative statistics. Their average silhouette score was respectively 0,21 and 0,31. Only one element in cluster 

12 showed a negative silhouette score (i.e., Poland, -0,04), and it has been manually removed from the following 

analysis. Details on individual silhouette scores can be retrieved in Table 1. 

Table 1. Items in the two clusters were selected for demonstrative purposes, ordered by silhouette score. 

Country Silhouette Score Cluster Inclusion 

Japan 0,3720 Cluster 12 Included 

France 0,2832 Cluster 12 Included 

South Korea 0,2367 Cluster 12 Included 

Bangladesh 0,2164 Cluster 12 Included 

Germany 0,1039 Cluster 12 Included 

Vietnam 0,0588 Cluster 12 Included 

Poland - 0,0404 Cluster 12 Excluded 

Afghanistan 0,4990 Cluster 32 Included 

Nepal 0,4953 Cluster 32 Included 

Turkey 0,4266 Cluster 32 Included 

Iran 0,4196 Cluster 32 Included 

Pakistan 0,4061 Cluster 32 Included 

Sri Lanka 0,1781 Cluster 32 Included 

Alegria 0,1735 Cluster 32 Included 

Romania 0,1510 Cluster 32 Included 

Yemen 0,0346 Cluster 32 Included 
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Table 2 proposes a country classification by a number of deaths and economic damage for the countries being 

previously selected. It is possible to observe that Bangladesh, Japan, and France account for 98,32% of total 

deaths count in their cluster, with Bangladesh presenting 89,80%. On the other hand, Japan, Germany, and 

France represent the 90,93% (75,57%; 8,85% and; 6,50% respectively) of the economic damage in their cluster. 

Similarly, for cluster 32 the countries: Pakistan, Iran, and Turkey account for 79,06% of total deaths, with 

however a flatter distribution than the one in cluster 12, i.e. Pakistan 32,14%; Iran 29,04%; and Turkey 17,87%. 

The same three countries, Pakistan (24,16%), Iran (24,07%), Turkey (23,22%), plus Algeria (10,10%) account 

for 81,56% of the economic damage in their cluster. Overall, cluster 12 involves 2.769.968 reported deaths, 

82,64% more than cluster 32. Likewise, cluster 12 has 82,33% economic damage losses reported more than 

cluster 32.  

Table 2. Country classification by death and economic damage (ordered by number of deaths). 

Country Total deaths Total economic damage [$] 

Bangladesh 3.010.075 21.893.565 

Japan 250.305 534.091.500 

Pakistan 186.943 30.157.109 

Iran 168.942 30.049.696 

Turkey 103.996 28.986.670 

Sri Lanka 41.046 4.475.364 

France 35.177 45.956.100 

Vietnam 29.545 23.404.066 

Nepal 27.224 6.836.415 

Afghanistan 26.890 603.320 

Germany 13.775 62.575.505 

Algeria 13.382 12.614.846 

South Korea 12.734 18.748.034 

Yemen 7.539 4.894.400 

Romania 5.681 6.199.920 

 

Table 3 proposes a country classification in terms of deaths and economic damage by impact types and 

technological impacts, this latter divided into sub-types (industrial, transport, miscellaneous). Besides, the 

analysis has been separated into two parts. In terms of Natural impacts, Bangladesh has the higher number of 

fatalities in the reports with 2.993.988 deaths, followed by Japan with 239.374 deaths. Moreover, Japan has the 

higher economic damage 533.908.500 $, followed by Germany with 61.978.605 $. Similarly, about 

Technological impacts: for accidents related to industries and transports, Bangladesh has the higher number of 

reported fatalities (1.809, and 13.261 deaths respectively), followed by Germany with 1.650 deaths (industrial 

impacts) and Pakistan 6.184 deaths (transport impacts). Likewise, Algeria has the higher economic damage 

reported in the industrial impacts (800.000 $). Nevertheless, South Korea presents 38.400 $ related to transport 

issues.  

 

Figure 1. Trend over time of the number of natural hazards accidents (blue line) and deaths, the sum of the 

values for the two clusters being analyzed (cluster 12, cluster 32). 

 

Errore. L'origine riferimento non è stata trovata. represents a combined line chart describing the count of 

natural hazard accidents reported and the death losses (logarithmic scale to facilitate comparison) over time. 

The figure shows a peak in the decades of 1940s, mainly due to a Drought disaster that occurred in Bangladesh 

accounting for 1.900.000 deaths approximately. Besides, it is possible to observe how the behavior over the 

400



decades in terms of count natural hazard accidents is increasing, and the death losses in the last two decades 

are decreasing. 

 

Table 3. Country classification for detailed impact, with a focus on technological aspects (industrial, transport, 

and miscellaneous). Background highlights maximum value per category. 

Country 
Natural Impact 

Technological Impact 

Industrial Transport Miscellaneous 

Deaths E. Dmg. [$] Deaths E. Dmg. [$] Deaths E. Dmg. [$] Deaths E. Dmg. [$] 

Afghanistan 25.197 603.320 280 No data 1.184 No data 229 No data 

Algeria 11.874 11.814.846 27 800.000 1.280 No data 201 No data 

Bangladesh 2.993.988 21.893.565 1.809 No data 13.261 No data 1.017 No data 

France 28.864 45.892.700 1.223 36.800 3.571 No data 1.519 26.600 

Germany 10.419 61.978.605 1.650 226.300 1.618 No data 88 370.600 

Iran 163.347 29.899.696 196 No data 4.682 No data 717 150.000 

Japan 239.374 533.908.500 41 160.500 4.150 16.500 5.840 6.000 

Nepal 24.871 6.835.155 No data No data 2.159 No data 194 1.260 

Pakistan 178.840 29.955.969 861 179.080 6.184 No data 1.058 22.060 

Romania 4.939 6.199.920 60 No data 587 No data 95 No data 

S. Korea 9.111 18.516.257 303 167.300 1.658 38.400 1.662 26.077 

Sri Lanka 40.057 4.475.364 25 No data 871 No data 93 No data 

Turkey 97.086 28.708.670 1.239 No data 3.084 No data 2.587 278.000 

Vietnam 27.240 23.399.566 762 2.000 1.354 No data 189 2.500 

Yemen 5.623 4.894.400 129 No data 1.647 No data 140 No data 

 

Figure 2 represents a combined line chart describing the count of natural hazard accidents and the economic 

damage (logarithmic scale to facilitate comparison) over time. It is possible to notice the economic losses 

reported for the clusters being analyzed show an exponential trend over time, differently from deaths losses. 

Moreover, it is possible to observe how the society and countries has been enhance the safety constrains in the 

industrial processes affected by the natural hazards accidents to reduce the occupational losses, instead, 

economic damage related by them has increased over the year. These results could be a signal of the increased 

quality of reporting over years as well as potential improvements in safety management and risk assessment of 

natural hazards.  More specifically, a larger number of events with smaller losses in EM-DAT may be used for 

analytics and support strategic decision-making also in relation and comparison with world risk indexes 

(Aleksandrova et al., 2021) 

 

Figure 2. Trend over time of the number of natural hazards accidents (blue line) and economic damage (dark 

blue line) for the two clusters being analysed (cluster 12, cluster 32). 

4. Conclusions 

The overall goal of the analysis presented in this paper is to demonstrate the possible usage of data about 

natural disasters and their implications for societal safety and industrial management. The work presents 

methodological results obtained from clustering algorithms and analytics referred to fatalities and economic 
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damage. The purpose of the clustering was to find a relevant group of countries that could facilitate inter-country 

learning opportunities and create actionable insights. The defined similarity is based on a set of general 

exposure and sensitivity features. Furthermore, the purpose of the proposed analytics may be helpful for 

policymaker to facilitate comparative analysis of fatality patterns and external factors that affect mortality 

subsequent to natural and technological events. Overall, the extension of these results to the entire EM-DAT 

database proves how natural hazards generate more impactful consequences than technological disasters. 

While from a societal point of view, this result shall motivate the need to invest in both protective and preventive 

mitigating measures, the extent of natural hazards should also push for specific interest on industrial safety, 

especially to prevent disastrous cascading consequences.  

These early results require further refinement and improvements to further shape future risk learning processes. 

In this regard, they also constitute the basis for potential additional analyses, (e.g.) using generative model, 

anomaly detection, as for promising research in this area (Nakhal A. et al., 2021; Patriarca et al., 2022). The 

analytics may also be used in larger Business Intelligence (BI) solutions to support a multi-variate dynamic 

analysis both descriptive and predictive (Nakhal A. et al., 2021) if incorporating other ML solutions. A joint BI-

ML development may indeed be a crucial instrument to support decision-makers at having a comprehensive 

understanding of natural hazards to shape risk prevention and mitigation programs. 
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