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The purpose of this study is to propose and test a tree-like structure for assessing the operational performance 

of an eco-industrial park composed of a managerial, focal company, and five manufacturing companies that 

exchange, generate, or reuse energy, waste, and by-products from different sources. The top term is the EIP 

operational overall performance, supported by indicators retrieved from the literature and organized in four 

constructs: (i) internal relationships; (ii) external relations; (iii) energy recovery; and (iv) materials recovery. The 

first construct encompasses relationships between companies, leadership, mutual trust and technological 

exchange, communication, and integrated information systems. The second encompasses relations with 

government, stakeholder communication, compliance, and social responsibility. The third encompasses the 

reuse of biomass, refuse-derived fuels, heat, fluids (water, gases, steam), and the energy efficiency of facilities. 

The last encompasses reuse of waste, reuse of byproducts, efficiency in the logistical process, and efficiency 

in the manufacturing process. The structure embraces the three main pillars of sustainability, since the first and 

second constructs include social issues, whereas the third and fourth include economic and environmental ones. 

The research method is qualitative modeling. Managers employed a Likert scale of agreement [0 = strongly 

disagree ... 1 = strongly agree] to evaluate the importance and performance of indicators. The importance 

depends on the influence on the construct and the influence that the construct exerts on the top term. The 

performance depends on the contribution of the indicator to the overall operational result of the EIP. Results 

show that there is no need to reallocate or replace strategic resources among the constructs, but also show that 

the overall performance is only 59 % of the maximum possible. Two constructs, internal relationships, and 

energy recovery require control actions and further managerial improvement.  

1. Introduction 

In eco-industrial parks (EIP), solid waste and energy exchanges can contribute to reducing the carbon footprint 

and simultaneously increase the efficiency of manufacturing units (Gil et al., 2021). Some industries, such as 

power generation, cement, and steelmaking manufacturing use solid waste and energy leftovers from partner 

companies as raw material and secondary fuel to increase industrial efficiency (Sellitto et al., 2021). Waste from 

agri-food supply chains (Sellitto and Hermann, 2016) and municipal solid waste (MSW), including useless 

appliances (Sellitto and Hermann, 2019), can also route for industrial reuse. 

One way to manage the strategic performance of EIPs and similar networks includes systematic assessments 

of economic and environmental aspects (Baierle et al., 2020). Such assessments consider practices such as 

industrial and energy symbiosis in managing the use of multiple renewable energy sources (Butturi et al., 2019). 

In the long term, an evaluation and control managerial system can help an EIP to achieve and maintain its 

economic, environmental, social, and institutional viability (Tudor et al., 2007). 

Previous studies suggest considering drivers and barriers in the implementation (Sellitto et al., 2021) and 

maintenance (Abreu et al. 2020) of industrial symbiosis projects. Both studies qualitatively evaluate technical, 

481



commercial, and institutional relationships between companies in the same geographic region and listed 

influential factors such as communication, trust, logistics, reciprocity, and cooperation capacity. Ceglia et al. 

(2017) add factors that can limit or encourage favorable logistical solutions, such as common purpose, 

technological innovation, and mutual engagement in technological developments. Hewes and Lyons (2008) 

highlight the importance of trust in dyadic relationships and the relevant role of the integration of information 

systems in the management of waste and energy exchanges. 

The purpose of this study is to propose an operational performance assessment system applied to EIPs. Such 

a procedure must include structural aspects related to the management (Sellitto et al., 2015) and the operation 

(Sellitto and Murakami, 2018) and technological aspects related to the efficiency of energy and materials 

recovery (Golev et al., 2015). The research method is qualitative modeling. The main contribution of the study 

is a tree-like structure formed by constructs and indicators. The structure was tested in an EIP that encompasses 

a focal, coordinator company, and five manufacturing companies that exchange, generate, reuse, or internally 

and externally route energy surplus, waste, and by-products recovered from internal and external sources. The 

top term is the overall operational performance, supported by four constructs: (i) internal relationships; (ii) 

external relationships; (iii) energy recovery; and (iv) materials recovery.  

The internal relationships construct encompasses relationships between companies, communication, mutual 

trust, and technological exchanges. The external relationships construct encompasses government relations, 

communication with stakeholders, compliance, and social responsibility. The energy recovery construct 

encompasses the reuse of biomass, heat, fluids (water, gases, or steam), and the energy efficiency of facilities. 

The material recovery construct encompasses the reuse of MSW, by-products, efficiency in the logistical 

process, and efficiency in the manufacturing process. The first construct and second construct include social 

issues, while the third and fourth constructs include economic and environmental issues. The literature presents 

aspects related to the constructs that may help to assess the feasibility of industrial or energy symbiosis projects 

(Belaud et al. 2019). However, to the best of our knowledge, the previous literature review found no evaluation 

and control procedure applied to an EIP operation (Faria et al., 2021). 

2. Theoretical Model: Relationships and Operation Efficiency in EIP 

Internal relationship management among partners is an essential concern in symbiotic industrial networks 

(Sellitto and Murakami, 2018). The existence of previous, robust relationships among companies (King et al., 

2020) and management systems (Ashton, 2008) can definitively facilitate the negotiation and management of 

critical factors that usually encourage or hinder symbiotic exchanges of materials and energy. The existence of 

a formal, institutional leadership may also boost performance (Faria et al., 2020), as well as mutual trust and 

technology advances exchange (Hewes and Lyons, 2008), communication (Ceglia et al., 2017), and integration 

of the information systems of partners (Hewes and Lyons, 2008). 

The same is true regarding external relationships. Political, economic, governmental, and institutional aspects 

significantly influence decisions involving symbiotic companies (Fraccascia et al., 2017), mainly when there are 

regional policies to encourage the reuse of materials and fuels surplus (Yu et al., 2014). To take advantage of 

opportunities, communication with the various stakeholders must be fluid and transparent (Fraccascia et al., 

2017). Besides avoiding penalties, which are usually severe, compliance with legal provisions many times 

generates additional benefits provided by legislation (Vimal et al., 2019), especially regional ones (Yamsrual et 

al., 2019). Finally, the relationship with neighboring communities and social responsibility actions can also 

encourage the active participation of these communities in offering materials still reusable, as occurs with waste 

picker cooperatives and municipalities administrations (Yamsrual et al., 2019). 

As for energy recovery, the use of biomass such as sugarcane bagasse (Chantasiriwan, 2021), sludge (Loureiro 

et al., 2021), and rice husk (Sellitto et al., 2013) can typically reduce the use of primary fuel to a rate of 20 % to 

30 % in most applications. Likewise, reusing refuse-derived fuel (RDR) (Brás et al., 2017), heat (Gil et al., 2021), 

and fluids such as hot water or steam can also reduce the generation of new heated fluids by up to a 25 % quote 

(Chantasiriwan, 2021). Finally, installations that are highly energy efficient or that take advantage of renewable 

energies, such as wind or solar panel farms, also contribute to increasing the strategic importance of energy 

recovery activities (Manaf and Abbas, 2021). 

Finally, regarding materials recovery, the reuse of waste retrieved from various sources (Bain et al., 2010), the 

reuse of byproducts originated from manufacturing processes (Sellitto et al., 2021), the efficiency in the reverse 

logistics processes, which encompasses picking, warehousing, and distribution (Sellitto et al., 2013), and the 

efficiency in the manufacturing processes in the final destination are relevant aspects that should be managed 

in the operation of an EIPs (Yu et al., 2014).  

Table 1 synthesizes constructs and indicators of the tree-like structure assessment. 
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Table 1: Tree-like structure of the operational performance assessment 

Top term  Construct Indicator: tag Empirical reference 

EIP  Internal  Members relationships: A1 King et al. (2020) 

performance relationships Institutional leadership: A2 Faria et al. (2020) 

  Mutual trust and technology exchange: A3 Hewes and Lyons (2008) 

  Communication: A4  Ceglia et al. (2017) 

  Integration of information systems: A5 Yu et al. (2014) 

 External  Relations with governments: B1 Yu et al. (2014) 

 relationships Communication with stakeholders: B2 Fraccascia et al. (2017) 

  Compliance: B3 Vimal et al. (2019) 

  Social responsibility: B4 Yamsrual et al. (2019) 

 Energy  Biomass: C1 Loureiro et al. (2021) 

 recovery RDR: C2 Brás et al. (2017) 

  Heat: C3 Gil et al. (2021) 

  Fluids: C4 Chantasiriwan (2021) 

  Energy efficiency: C5 Manaf and Abbas (2021) 

 Materials  Reuse of waste: D1 Bain et al. (2010) 

 recovery Reuse of byproducts: D2 Sellitto et al. (2021) 

  Logistical efficiency: D3 Sellitto et al., (2013) 

  Manufacturing efficiency: D4 Yu et al. (2014) 

3. Methodology 

The study adopted the following steps: (i) a literature review identified constructs and indicators in EIP 

management, which supported a tree-like structure for operational performance assessment; (ii) two managers 

of the focal company of the EIP evaluated, using a Likert scale [0 = strongly disagree ... 1 = strongly agree], the 

importance and performance of the indicators; (iii) an importance-performance analysis supported a strategic 

diagnosis of the EIP. Ordered pairs (importance, performance) formed a scatter diagram. Constructs near a 

positive diagonal forming a linear relationship are balanced (high importance, high performance; low importance, 

low performance). Far from the diagonal, there is some kind of imbalance: in high performance and low 

importance constructs, there is an excess of allocated strategic resources; in low performance and high 

importance constructs, there is a lack of allocated strategic resources (Slack, 1991). The joint analysis can 

indicate reallocations or even replacement of EIP strategic resources, which usually are scarce. 

The methodology was applied to a network formed by a focal company and five secondary companies whose 

exchanges are synthesized in Table 2. 

Table 2: Companies of the EIP 

Company Receives Activity Delivers 

Focal Metallic scrap Steelmaking plant Steel by-products, MSW 

1 MSW Waste processing plant RDF 

2 RDF Cement plant Soil pH corrective 

3 Steel by-products Foundry plant Metallic slag to pavement service 

4 Steel by-products Machine manufacturer plant Metallic scrap 

5 Useless vehicles Shredder plant Metallic scrap 

 

The steel by-products involved are electric-arc furnace and continuous casting dust, metallic swarf, mill scale, 

steel leftovers, and zinc sludge. The study of Sellitto et al. (2021) entails a complete description of the byproducts 

delivered by the steelmaking plant, a semi-integrated unit that includes refining (melt-shop) and conforming 

(rolling mills) stages. The study also describes how the fly ash generated by company 2 routes to the cement 

industry, acting as a fuller for pozzolanic cement products. 

4. Results 

Three managers of the focal company replied to two statements: (i) the importance for the overall operational 

result of the EIP of [Indicator n] is very high; and (ii) the EIP performance for [indicator n] is very good. The 

response options were: strongly agree (1), slightly agree (0.75), neither agree nor disagree (0.5), slightly 

disagree (0.25), and strongly disagree (0). The evaluation took into account the medians of the three replies, 

shown in Table 3. Table 4 synthesizes the evaluation. 
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Table 3: Evaluation by indicator 

Indicator Importance Performance Indicator Importance Performance 

A1 4 3 C1 4 2 

A2 2 2 C2 5 3 

A3 5 3 C3 2 1 

A4 5 3 C4 1 1 

A5 4 2 C5 4 3 

B1 4 4 D1 5 5 

B2 4 5 D2 5 4 

B3 5 4 D3 4 3 

B4 5 4 D4 4 4 

 

Table 4: Synthesis of the evaluation 

Top term  Construct Mean importance Mean performance Gap Order 

EIP Internal relationships 4.00 2.60 1.40 first 

performance External relationships 4.50 4.25 0.25 fourth 

 Energy recovery 3.20 2.00 1.20 second 

 Materials recovery 4.50 4.00 0.50 third 

 

4.1 Discussion 

The discussion entails two main issues. The first is the analysis of how the allocation of strategic resources, 

such as labor, capital, management, and intangible assets, fits with the importance of the constructs. Eventually, 

replacements or reallocation of resources among constructs may be necessary when imbalances exist. The 

second issue is to control the performance. Eventually, control actions focusing on increasing performance may 

also require managerial improvement in procedures, not only in resources. The scatter diagram of Figure 1 plots 

the ordered pairs [importance, performance] for the constructs, which helps afford the first issue.  

 

Figure 1: Relationship between importance and performance for the constructs 

The diagram shows a high likelihood (R2 ≈ 90 %) for a linear relationship among constructs, meaning no 

imbalance: the higher the importance, the higher the performance. It means that the current strategy coherently 

allocates more resources (which imply a higher performance) to the more important constructs. Therefore, there 

is no need for the replacement or exchange of strategic resources among constructs. Regarding performance 

improvement, equation 1 provides an overall operational performance of 59 % for the EIP. 
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In which: 

• P % = overall relative performance of the EIP, ranging from 0 to 100 %; 

• Impi = importance of the ith indicator, i ∈ [1, 2, … , 20]; 

• Perfi = performance of the ith indicator, i ∈ [1, 2, … , 20]; 

• Maxperf = maximum possible individual performance = 5; and 

• Minperf = minimum possible individual performance = 1. 

 

Such a result means that, although balanced, the overall operational performance barely overcomes half of the 

top, leaving room for improvement. In tree-like structures, a usual assumption is to admit high correlation among 

indicators of the same construct and low correlation otherwise (Sellitto et al., 2015). For example, recovering 

hot water from a process improves simultaneously the performance of both heat and fluids indicators but has 

little or no effect in other constructs. The same would be true regarding the implementation of a communication 

channel with the stakeholders. It may improve the performance of more than one indicator in the second 

construct, such as compliance or social responsibility, but would have no effect outside the construct. 

Since actions targeting one indicator may influence others in the same construct, it is useful to focus on the 

constructs with the major gaps. In the EIP, those constructs are internal relationships and energy recovery. For 

the same managerial effort, technology development, or financial investment, strategic actions outside these 

two constructs may produce fewer effects on the overall operational performance. Some examples of strategic 

actions that the management body should immediately start to boost internal relationships are a structured 

program to stimulate communication and technology development and exchange among members, a systematic 

schedule of manager meetings to exchange experiences, and the implementation of an integrated information 

system able to exchange and update information in real-time. To boost energy recovery, management should 

implement a systematic program to receive larger volumes of MSW from local, nearby communities, not only 

from the local industrial activity of the region, and biomass from the rural activity, which is intensive in the region. 

Such actions immediately increase performance with a low managerial implementation effort.      

5. Conclusions 

The main conclusion is that even if a balance exists in the strategic resources allocation in the EIP, the overall 

performance is not satisfactory. The procedure pointed out that the EIP achieves only 59 % of the maximum 

performance it should achieve. Therefore, control actions are due mainly to the constructs with larger gaps 

(mean importance – mean performance).  Internal relationships and energy recovery are the constructs with 

larger gaps and should be priorities for control actions aiming at increasing performance. 

The study opens room for more research. Further research should include multicriteria decision methods for 

evaluating the importance and more respondents, which will allow the refinement of the metric, mainly regarding 

multivariate analysis and multicollinearity in indicators. Multicollinearity should be verified by cross-loading 

(correlation with more than one construct), wrong-loading (correlation with the wrong construct), and weak-

loading (no correlation) and whenever possible forewarned. The solution may require relocation, reconfiguration, 

or elimination of indicators. These actions lead to a more robust assessment procedure that can serve as a 

strategic feedback link for the performance management of eco-industrial parks. 
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