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In recent years the fault detection and isolation (FDI) problems have garnered increasing interest due to 

concerns of environmental protection, stricter regulations and optimization of processes within industrial 

settings. The use of data-based methods such as Neural Networks (NNs) for purposes of FDI has received 

significant research interest in the scientific community. However while these data-driven methods present 

relatively robust and sensitive means of fault detection and isolation they require large amounts of process 

data for their training so they can work reliably. Within the chemical industry rather than experimental 

investigations various modeling techniques such as computational fluid dynamics (CFD) may be used to 

generate this training data. However many of these methods are computationally expensive and less efficient 

for producing large data sets. In this paper we wish to present an identification algorithm for the development 

of compartment models (CM) based on CFD results which can be used to reliably generate process data for 

FDI purposes in a computationally more efficient way.  

1. Introduction 

In recent decades the optimization of safety conditions and reliable operation of processes even under 

disturbances has become a focal point of academic research. Proper safety is critical for highly hazardous 

systems which are for example prone to thermal runaway or highly sensitive to changes in process 

parameters such as biological systems. Fezai et al. (2021) describe a data-based FDI method to supervise 

biological systems. Their technique utilizes a Gaussian process regression model to describe system 

behaviour and abnormalities are detected using generalized likelihood ratio tests. Tarcsay et al (2021a) 

developed an FDI scheme based on parity relations and fuzzy logic for the isolation of parametric and additive 

faults within a distillation system. Ait-Izem et al. (2018) explored the use of interval principal component 

analysis (PCA) for the supervision of a distillation column based on process data. FDI based on statistical 

methods such as PCA or Neural Networks (NNs) based on the use of process data have gained increased 

popularity over the years due to their flexibility and easy application. However the necessary amount of data to 

reliably train these methods is not always available. In such cases process models, in the chemical industry in 

particular computational fluid dynamics (CFD) methods may be useful to generate the training data. While 

CFD methods can be used to characterize system behaviour (velocity fields, temperature and concentration 

gradients, etc.) in explicit detail they are usually computationally expensive and inefficient at generating large 

amounts of process data. Compartment models (CM) on the other hand are models that approximate the 

characteristics of a system through a superposition of idealized models thus they are computationally less 

expensive. However the identification of the CM structure is often times less rigorous, being simply based on 

the residence time distribution (RTD) function of a unit. To alleviate this in recent years many researchers 

have begun developing more rigorous approaches to the identification of CM structures, based on CFD 

results. Examples of this include the work of Krychowska et al. (2020) who created a CFD based CM  

(CFD-CM) for the description of a bioreactor and validated their model through experimental means. Yang et 

al. (2019) utilized an identified CFD-CM for optimization of reaction selectivity within a stirred unit. Massmann 

et al. (2020) used a CFD-CM for the investigation of crystallization in a multi-phase reactor, and identified the 

CM structure with regards to the population balance model of the crystallization process. The method 

proposed within this paper is a further developed version of the algorithm proposed by the authors within a 
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previous publication (Tarcsay, 2021b). The method explores the identification of a CFD-CM in a wastewater 

treatment tank. The process utilizes a segmentation of the explored systems volume and evaluates the flow 

behavior of the segmented volumes by utilizing fuzzy logic and as a novelty compared to the previous version 

of the algorithm clustering techniques. Idealized flow characteristics are assigned to the segmented volumes 

and the individual volumes are later aggregated into compartments with idealized flow behavior through the 

use of image segmentation techniques. The behavior of the system is then approximated through the network 

of interconnected compartments with idealized flow behavior. The advantage of the method is twofold. It 

allows users to integrate empirical knowledge about the systems flow behavior through the fuzzy logic 

component but also decreases the arbitrary nature of compartmentalization through the clustering process.  

2. The proposed algorithm 

The white-box model of a unit is represented by the mass, component, impulse and heat balance equations of 

the system. For chemical equipment these balance equations can be simplified for systems with idealized flow 

behavior such as continuous stirred units (CSTR) or units with plug flow (PFR). These idealized units have 

unique responses to specific input signals such as the Heaviside (H) or Dirac delta functions. These 

responses for the Heaviside function are shown in Figure 1.a where t and t* denote time and signal 

initialization time respectively. 

 

 

Figure 1: Step responses of systems with idealized flow behavior (a), and CFD-CM identification algorithm (b) 

In developing CMs for various equipment units with idealized flow behavior are connected into a network to 

produce a system with a step response similar to the original equipment. This however does not take local 

flow behavior within the system into account. The aim of this work is to elaborate a more rigorous method for 

the identification of CFD-CMs. The algorithm proposed is a further developed version of an earlier algorithm 

devised by the authors (Tarcsay, 2021b). Since the newly developed algorithm is being compared to the 

results of the old version figures utilized for comparison are all referencing the original publication. Figure 1.b 

displays the steps of the CFD-CM identification algorithm within the previous work (I.) and the currently 

updated method (II.). While improving the algorithm three goals have been taken into consideration. The first 

one was the creation of a general algorithm for CFD-CM identification where each compartment can be 

assigned to a distinct volume of the investigated unit and accurately describes the local velocity field. The 

second one was to decrease empirical inputs of the model developer and make the method more rigorous and 

applicable to many different systems. The third one was to develop a reliable means of CM identification that 

retains the white box characteristics of CFD methods while being computationally inexpensive for data 

generation to train models for data-based FDI methods. The previous method “I” discussed in the original 

article, displayed in Figure 1.b utilizes CFD methods to acquire a steady-state velocity field of a unit under 

known process conditions. Based on the grid used within CFD a set of control volumes with uniform size 

referred to as elementary cells (EC) were defined and in each of these the local velocity field is evaluated. 

Quantifiers such as the mean velocity, variance of velocity vectors, etc. have been utilized as inputs to a fuzzy 

logic rule to measure the CSTR, PFR or dead volume (DV) flow tendency of singular ECs. In the original 

algorithm each EC was later categorized into one of the three idealized model categories manually based on 

the weighted average of the three flow behavior measures obtained through fuzzy logic. The ECs with 

idealized flow behavior were later agglomerated into different compartments within the unit and their volumes 

were estimated. Crossflow rates between different compartments were optimized through minimizing the 
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squared difference between the step response of the CFD model and obtained CM structure. In the revised 

algorithm instead of manual classification of ECs through empirical limits clustering algorithms were applied to 

determine the idealized flow behavior within each EC. The agglomeration of ECs into clusters was conducted 

using image segmentation techniques resulting in a more accurate CM structure which is less dependent on 

the model developer’s expertise.  

3. The investigated system  

To demonstrate the updated algorithm and compare it to its previous version the model system introduced in 

the original article is used as reference. This is a slightly modified version of a test problem found in the 

COMSOL Multiphysics 5.2a CFD software (COMSOL, 2016) library. The investigated system is a wastewater 

treatment tank whose construction can be seen in Figure 2.a. Through CFD methods the velocity field and 

concentration field within the unit has been approximated for steady state parameters provided in the original 

article, this is displayed in Figure 2.b. The boundary and initial conditions belonging to the observed steady-

state are shown in Table 1. The calculations have been conducted under isothermal operating conditions, with 

the observed flow medium being water and an isotropic diffusion coefficient of  

10-4 m s-2. During the calculations only convective and conductive flow has been taken into account. 

 

Figure 2: Geometry of the investigated system (a), velocity field (m s-1) within the investigated system (b)  

Table 1: Initial and boundary conditions within the system 

Initial velocity within 

the unit (m s-1) 

Initial tracer 

concentration 

(mol m-3) 

Inlet velocity  

(m s-1) 

Inlet tracer  

concentration  

(mol m-3)  

Outlet boundary  

pressure (kPa) 

0 0 0.1 2 101.3 

4. Results 

The updated algorithm was tested and compared to the original version. The results will be displayed in the 

following. The steps up to generating the fuzzy measure for classification are the same for both algorithms and 

are performed according to the original article where the results are visualized. The next step in the new 

algorithm included characterizing each EC as one of the pure idealized flow model categories PFR, CSTR or 

DV based on the measures obtained from fuzzy logic through the use of clustering. The clustering was 

conducted in MATLAB R2021b. Various distance measures have been tested to classify the ECs and their 

performances have been compared. To evaluate which distance measure is best suited for the classification 

of the ECs into the three categories the average silhouette value of the clustering for each measure has been 

calculated. The silhouette score of a data point during clustering is a metric used to characterize the goodness 

of fit of a given point into its assigned cluster. This is done in accordance with  

Eq(2) where s(i) is the silhouette value of a given data point i.  

𝑠 𝑖 =  

𝑔(𝑖) − 𝑓(𝑖)

𝑚𝑎𝑥 𝑔 𝑖 , 𝑓(𝑖) 
, 𝑖𝑓 𝐶𝐼 > 1

               0,                      𝑖𝑓 𝐶𝐼 = 1

 

 

(2) 

The terms g(i) and f(i) refer to the mean distance of data point i from the points within its closest neighbouring 

cluster and data points of its own cluster respectively, where CI is the number of points within the cluster of the 

observed point i. The silhouette score has a range of [-1,1], where a value of “-1” denotes a point which lies 

close to its neighbouring cluster and relatively far from points of its own cluster while a score of “1” means that 
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the point i is on average far from the points of its neighbouring cluster and close to its own clusters points. The 

average of the silhouette scores was calculated for four methods available within the MATLAB R2021b 

framework. Based on the results the “sqeuclidean” distance metric which uses standardized Euclidean 

distance for clustering has the best performance with an average silhouette score of 0.79. The clustering of 

the points is visualized in Figure 3.a, while the silhouette plot of the clustering can be seen in Figure 3.b with 

clusters “0”, “1” and “2” corresponding to idealized DV, CSTR and PFR behavior respectively. 

 

Figure 3: Clusters of idealized behavior (a) and silhouette values for the clustering (b) 

It can be seen in Figure 3.a that the clustering can reliably separate the different ECs based on the flow 

behavior they exhibit. The idealized EC structure within the tank obtained through clustering can be observed 

in Figure 4.a while Figure 4.b shows the idealized EC structure based on the limit checking approach used in 

the previous algorithm for comparison.  

 

Figure 4: EC structure based on the updated (a) and the original algorithm (b) 

By comparing the idealized EC structure for the two methods the following conclusions can be drawn. It can 

be seen that the general EC structure in both cases is similar for areas with large dead-volumes present and 

for areas with clear mixed or plug flow characteristics especially near the inlet and outlet positions. Major 

differences however can be observed in the area between the two bafflers where the updated algorithm 

classifies the flow as mostly plug flow, while the old algorithm approximates regimes with strong mixed flow. 

The results of the updated algorithm are more in accordance with the flow behavior that can be observed in 

Figure 2.b. A unidirectional flow can be seen between the two bafflers which connects the inlet and outlet 

boundaries that shows stronger PFR than CSTR tendencies. The next step is the agglomeration of individual 

ECs into continuous compartments with uniform, idealized flow behavior. In the previous version of the 

algorithm this process was done in a purely manual fashion. After the update the agglomeration step is 

conducted automatically by using image segmentation techniques on the obtained figure representing the 

idealized behavior of ECs (Figure 4.a). The three characteristic colors denoting each flow behavior (PFR-

yellow, CSTR-green, DV-blue) have been identified based on color thresholds and segmented from the rest of 

the regions. For each ideal flow type the volumes where the currently observed flow type is present have been 

identified and ordered into clusters. The volume of each of these compartments has been calculated based on 

the total number of pixels within the defined cluster. It can be observed in Figure 4.a that there are ECs which 

stand alone, in order to avoid denoting these as individual compartments the resulting compartment structure 

was checked. If a compartment had a small volume compared to the total liquid volume within the tank  
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(less than 5% of the volume) the respective compartment is merged into the closest compartment with a valid 

volume that has the same idealized flow characteristic. The contour image of the idealized flow behavior can 

be seen in Figure 5.a, while the image segmentation for the DV volumes can be seen in Figure 5.b. The 

individual compartments are denoted by red circles, where the effective volume of the compartments is 

proportional to the radii of the circles drawn around the compartment centroids.  

 

Figure 5: Contour plot of the EC structure (a), the segmented images of the DV regions (b) 

Through the image segmentation procedure the compartment structure was obtained and evaluated. The 

optimal structure was determined to contain five compartments, three DV, one PFR and one CSTR 

compartment. This is a decrease in number of compartments compared to the results of the previous 

algorithm where seven compartments were deemed necessary for the approximation. The connections 

between different compartments have been evaluated based on the effective radii of the evaluated 

compartments and their centroid locations.  Figure 6.b shows the CM structure based on the old algorithm, 

while Figure 6.a shows the structure based on the new algorithm.  

 

Figure 6: CM structures based on the new (a) and old algorithms (b) 

In the new algorithm the CM structure includes fewer compartments than in the original version that allows for 

easier and more compact model with reduced calculation times. To calculate the cross flow rates between 

different compartments (α) similarly to the previous version of the algorithm an optimization process was used. 

The CM structure has been built in Simulink environment and the idealized units have been represented 

through their differential equations. The resulting system of partial differential equations was solved 

numerically by the Rosenbrock algorithm. The step response of the system has been obtained through CFD 

methods and through the use of CM and the α parameters have been optimized through the method of interior 

points with regards to minimizing the squared difference between the step responses of the CFD and CM. The 

results of the optimization and the calculated α parameters for the new algorithm are shown in Figure 7.a., the 

step response of the system for CFD methods and the CMs obtained both for the new and old algorithms are 

shown in Figure 7.b.  
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Figure 7: The results of the optimization process (a) and the step response function of the system based on 

the CFD method and the original (I) and updated algorithm (II) (b) 

As can be seen in Figure 7 the new CM structure results after optimization leads to a similar result for 

approximating the step response of the system compared to the older algorithm while having a smaller 

compartment number and thus being computationally less expensive. The squared sum of differences 

between the step response of the CFD and CM for the updated algorithm was 8% less compared to the 

original method. This shows that the new algorithm produces a CM with less compartments, more realistic 

structure along a better fit to the CFD methods.  

5. Conclusions  

In this paper an updated version of an algorithm has been introduced which can be utilized to generate a 

CFD-CM for a physical system. The original algorithm evaluated arbitrarily small volumes (EC) within the unit. 

In the previous iteration of the algorithm the identified ECs were classified into an idealized flow pattern based 

on limit checking of the average of the idealized flow measures obtained through fuzzy logic then 

agglomerated manually and a compartment structure was established based on visual inspection. In the new 

algorithm the EC classification was done using a clustering algorithm, the agglomeration of ECs was 

conducted through the use of image segmentation techniques to reduce subjectivity within the CM 

development. The updated algorithm had several advantages, including smaller compartment number for the 

approximation with one less compartment than the previous version, 8% better fit of the step response to the 

CFD data and 6% decreased calculation time.  
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