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Anhydrous ethanol has several applications in industrial segments, besides being used as an additive to 

gasoline. Due to the formation of the azeotrope between ethanol and water, complex separation processes 

must be used to obtain anhydrous ethanol, such as extractive distillation, azeotropic distillation or molecular 

sieve adsorption. Among these processes, molecular sieve adsorption has the advantage of not requiring the 

addition of a solvent, which can enable a very high degree of purity for the product and avoids a solvent 

recovery step. This type of adsorption process can be performed using a hydrophilic adsorbent with pore 

diameter capable of selectively adsorbing water molecules and not ethanol molecules. Through dynamic 

process simulations, profiles of mole fractions of ethanol and water in the bed, the variation of the product 

composition with time and sensitivity analyses were evaluated. The adsorption phenomenon, the molecular 

sieves mechanism and the use of software for the simulation of chemical processes were demonstrated. The 

simulations reached very satisfactory results for the process. The base case simulation reached 91.3 % mass 

purity for the complete simulation of the batch process lasting 5000 s. Limiting the simulation to 2337 s, the 

mass purity was 99.3 %, while the recovery was 100.0 % and the productivity was 3.40 L/h/kg of adsorbent. 

This purity achieved meets the criteria for the use of ethanol as a gasoline additive. Column diameter and feed 

flow rate were the variables that most impacted the results in the sensitivity study. 

1. Introduction 

In the 1970s, during the oil crises, the National Alcohol Program (Pró-Álcool) was created in Brazil, in which it 

began to study fuels of vegetable origin alternative to gasoline derived from petroleum, with emphasis on the 

production of ethanol from sugar cane, a technique that prevails in the country until the present (Silva, 2022) 

with success. Therefore, it was regulated by Resolution N° 1 of 2015 of the Interministerial Council for Sugar 

and Alcohol (CIMA) that anhydrous ethanol in Brazil composes the formulation of regular gasoline, in a 

mixture of 27 % for regular gasoline and 25 % for premium gasoline, with a minimum ethanol mass fraction of 

0.993 (National Agency of Petroleum, Natural Gas and Biofuels, 2015). For other countries, the minimum 

fraction of ethyl alcohol may vary according to local regulations, as shown in Table 1. 

Table 1: Specifications of anhydrous ethanol to be mixed with gasoline. From Fontana et al. (2021). 

Local  
Minimum ethanol content Maximum water content 

Regulation 
% mass % volume % mass % volume 

Brazil 99.3 98.0 0.7 - ANP Nº 19 (2015) 

USA - 92.1 1.26 1.0 ASTM D4806-16 (2016) 

Europe 98.7 - 0.3 - EM 15376:2014 (2014) 

 

It is known that ethanol and water form an azeotropic mixture in an ethanol fraction of 0.8952 molar or 0.9562 

mass at atmospheric pressure and a temperature of 78.2 °C (Walas, 1985). The azeotropic point shows that 
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the mole fraction of ethanol in the vapor and liquid phase are the same. Thus, in order to obtain anhydrous 

ethanol, some additional technique is needed besides to traditional distillation, such as extractive or azeotropic 

distillation, pervaporation and molecular sieve adsorption, which is the object of study of this work. 

The phenomenon of adsorption consists of the mass transfer of one or more components, called adsorbates, 

from a fluid phase to the surface of a solid phase, called adsorbent. For adsorption columns, there is usually a 

fixed bed in which a continuous flow of fluid is maintained through the bed filled with adsorbent, which retains 

the adsorbate, separating it from the fluid phase until the moment when the adsorbent becomes saturated and 

separation is no longer possible. After saturation, it is necessary to perform desorption to regenerate the solid 

phase. This process is done physically, since the adsorption on molecular sieves is carried out through 

physisorption, characterized by weak intermolecular bonds (of van der Waals) (Ruthven, 1984). 

Molecular sieves are porous solid materials that have the ability to selectively separate compounds in a 

mixture. The micropores present in its structure capture the molecules of one of the components of the 

mixture by adsorption, while the molecules of the other component do not change. A type of molecular sieve 

commonly used in industrial processes are zeolites 3A, characterized by a porous crystalline structure of 

aluminosilicates (Braga, 2016). The vast majority of this type of molecular sieve is hydrophilic - except when 

the zeolite goes through the dealumination process that makes it hydrophobic (Müller, 2017) -, which favors 

the capture of water molecules in relation to those of ethanol. Furthermore, 3A zeolites, whose nomenclature 

refers to the diameter of their pores, in this case 3 Å, greatly favors the dehydration of ethanol, since the water 

molecule has a diameter of 2.8 Å while that of ethanol has 4.4 Å. 

The adsorption process with molecular sieves is more advantageous than other ethanol dehydration 

processes, such as azeotropic distillation and extractive distillation that use, respectively, cyclohexane and 

monoethyleneglycol as solvents. As there is no addition of a solvent to separate water from ethanol, molecular 

sieves minimize contamination of the final product, providing better quality ethanol, in addition to not requiring 

a subsequent solvent recovery step (Abdala, 2017). As a result, the process using molecular sieves has less 

energy expenditure and lower steam consumption (Huang et al., 2008), since it operates in the vapor phase, 

not needing to condense the hydrated ethanol at the exit of the upstream distillation column. 

Technologically speaking, it is important to spend as little energy as possible in the ethanol production process 

to reduce bagasse consumption, increasing the potential for second-generation ethanol production. This is 

because sugarcane bagasse is used to generate energy and steam used in the ethanol process. The unit 

operation that requires the most energy in anhydrous ethanol production is the extractive or azeotropic 

distillation process, which are the most used processes in large scale ethanol plants in Brazil. The challenge 

then is to have a robust adsorption process that allows the product to reach the desired concentration. 

Thus, the objective of this work was to emphasize the importance of this separation technology in the 

downstream process showing more clearly its implementation on Aspen Adsim Simulator, taking into account 

the adsorption process in molecular sieve for the production of anhydrous ethanol. This procedure is not much 

present in the open literature. Furthermore, adsorption process having as dehydrating agent zeolite beads 

demands much less kg steam/L ethanol when compared to conventional separation processes. 

2. Methodology 

In order to make simulations possible through simple adsorption on molecular sieves for a batch regime, the 

Aspen Adsim package of the Aspen simulator was used, in which the adsorbent used was zeolite 3A, already 

consolidated for this type of application (Simo, 2009; Fonseca, 2011). 

Table 2: Operating parameters of the adsorbent column based on Fonseca (2011) 

Parameter  Value 

Hb - Bed length (m) 7.3 

Db - Inner diameter of the bed (m) 2.4 

ℰi - Bed porosity (m³ voids/m³ bed) 0.5098 

Rp - Adsorbent particle radius (m) 1.785‧10-3 

ℰp - Particle porosity (m³ voids/m³ bed) 0.2869 

RHOs - Adsorbent solid density (kg/m³) 2254 

 

For the simulation, it was considered that the hydrous ethanol feed stream was 3000 kmol/h with a mole 

fraction of ethanol equal to 0.8 (lesser than the azeotrope). The simulation aims to adsorb the water present in 

the feed, producing anhydrous ethanol at the exit of the column, with a mass fraction of ethanol in the product 

of 0.993, which meets the minimum specifications for ethanol in European countries, the United States and 

Brazil, according to Table 1. On the other hand, the minimum mass fraction of water does not meet European 
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requirements, which must be lesser than 0.003. The conditions for feeding the bed in the gaseous phase were 

440.15 K temperature and 3.79 bar pressure, according to Fonseca (2011). 

The operating parameters used were proposed by Fonseca (2011), as shown in Table 2. The parameters of 

the Langmuir isotherm model used are shown in Table 3, as well as the mass transfer coefficients adopted. 

Table 3: Mass transfer coefficients and parameters of the Langmuir isotherm based on Fonseca (2011) 

Parameter  Value 

MTC Ethanol – Mass transfer coefficient (1/s) 0 

MTC Water – Mass transfer coefficient (1/s) 1.03‧10-3 

IP (1, Ethanol) Parameter 1 of the isotherm for ethanol 0 

IP (1, Water) Parameter 1 of the isotherm for water 0.1489 

IP (2, Ethanol) Parameter 2 of the isotherm for ethanol 0 

IP (2, Water) Parameter 2 of the isotherm for water 19.11 

3. Results and discussions 

Considering the explained methodology, the batch process of anhydrous ethanol production by simple 

adsorption in molecular sieve was simulated using the Aspen Adsim software. The simulations were 

considered in a batch regime in order to evaluate the behavior of the proposed model, its main characteristics 

and the capacity of the process to selectively adsorb water. 

3.1 Base case simulation 

Inserting the considerations present in Tables 2 and 3, relevant curves are generated for the study of the 

process. Evaluating the mole fraction of water in the product stream at the column outlet over time, the system 

breakthrough curves are obtained (Figure 1). Furthermore, it can also compare the evolution of the profile of 

the mole fraction of ethanol and water along the column at different simulation times, as shown in Figure 2. 

 

Figure 1: Breakthrough curve of the adsorption process with molecular sieve  

From the results found, it is possible to notice the effect of the phenomenon of selective adsorption occurring 

along the adsorbent column, given that the mole fraction of water in the product stream is smaller than in the 

feed stream. On the other hand, with the passage of time, the concentration of water (adsorbate) gradually 

increases in the product stream, as evidenced in Figure 1 by the breakthrough curve. From the breakthrough 

point, the bed starts to become saturated and the capacity of the bed to adsorb water decreases. 

Through Figure 2, it is observed that the base of the adsorption column (region close to the feed stream) is 

saturated faster than the other regions of the bed, which gradually increase the amount of adsorbed water 

until they saturate. This fact is observed since the upper part of the column receives a flow partially enriched in 

ethanol, while the base receives hydrated ethanol from the feed. 

Calculating the process performance indicators, 91.3 % mass purity was obtained for the complete simulation 

lasting 5000 seconds. However, limiting the simulation to just 2337 seconds, the mass purity was 99.3 %, 

while the recovery was 100.0 % and the productivity 3.40 L/h/kg of adsorbent. The purity achieved meets the 

criteria for use as a gasoline additive (Table 1). The high recovery of ethanol indicates that the adsorbent bed 

retains only water molecules during its operation, allowing the passage of ethanol. The productivity obtained is 
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considerably lower than those obtained in other studies in the literature, such as Fonseca (2011). However, 

the present work considers a batch regime with the bed operating only once, contrary to the study by Fonseca 

(2011), which presented a cyclic regime. The benefits of batch processes consist of the possibility of easily 

controlling and limiting the operating time of the process and, consequently, the purity and productivity 

achieved. Furthermore, there is no ethanol lost in the purge step, as occurs in the cyclic regime. 

 

Figure 2: Column profile at different times  

3.2 Sensitivity analysis 

New simulations were performed for the sensitivity analysis, varying the parameters by +10 % and -10 % 

(except for diameter and porosity, which were evaluated at +10 % and +20 %). The total simulation time was 

5000 s, calculating in this period the productivity of the adsorbent and the final purity reached by the batch. As 

it is necessary for ethanol to have a mass purity greater than 99.3 % to be used as a gasoline additive (Table 

1), the performance indicators were also calculated considering the simulation until the time when the batch 

mass purity is equal to 99.3 %, which can be considered the breakthrough time (Seader, 1998). For all 

simulations, recovery was 100 %, which indicates that the column does not retain ethanol molecules. 

According to Figure 3a, the greater the feed flow rate, the lower the final purity achieved by the process, since 

there is a greater amount of solute passing through the adsorbent bed, which decreases the residence time of 

water molecules, which will be less retained by the zeolites in the column, increasing the water concentration 

at the end of the batch. On the other hand, with a higher flow rate, productivity increases due to the increase 

in the amount of final product and the breakthrough time decreases, as the bed saturates more quickly. 

The results shown in Figure 3b show that a higher adsorption pressure provides greater purity, justified by the 

adsorption isotherms. The inverse process occurs in the desorption step using the Pressure Swing Adsorption 

technique. The productivity changes little with pressure variation, remaining around 5.23 L/h/kg of adsorbent 

for the simulation up to mass purity of 99.3% and 4.80 L/h/kg of adsorbent for the complete simulation. 

Breakthrough time increases with pressure, as the adsorption capacity of the bed is greater. 

The temperature (Figure 3c), contributes negatively to the purity because of the adsorption isotherms. The 

higher the temperature, the smaller the amount of adsorbed solute, as it happens in the desorption step by the 

Temperature Swing Adsorption technique. Breakthrough time and productivity are little impacted, remaining 

5.23 and 4.80 L/h/kg for the productivity of 99.3% mass purity and for the final productivity, respectively. 

The results in Figure 3d show that the higher the initial concentration of water, the lower the final purity, since 

there is a greater amount of solute for the same amount of adsorbent, which saturates faster, increasing the 

amount of solute in the final solution. Productivity decreases with increasing concentration, since it is directly 

proportional to the mole fraction of ethanol in the final solution, because high initial water concentration values 

lead to a lower quality of ethanol, in addition to reducing the breakthrough time, since it favours the driving 

force of adsorption, saturating the bed more quickly. 

As an important bed designer parameter, column diameter had the greatest impact on performance indicators 

(Figure 3e). Increasing the diameter favours purity, because a larger column has more adsorbents and greater 

adsorption capacity. In addition, the velocity inside the column decreases for the same flow rate, which 

increases the contact time of the solute with the adsorbent, favouring adsorption.  
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  Figure 3: Sensitivity analysis of variables in performance indicators 
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However, a bed with larger dimensions, greater is the amount of adsorbent for the same feed flow rate, which 

decreases the productivity. The bed saturation time increases due to the higher adsorption capacity. 

Bed height has similar effects on performance indicators to bed diameter (Figure 3f). A higher bed height 

produces higher purity ethanol due to the higher amount of adsorbent and adsorption capacity. Productivity is 

disadvantaged because of the increase in adsorbent volume for the same flow rate. The breakthrough time 

increases the larger the bed. 

The increase in porosity favours purity (Figure 3g), since there is greater contact with the adsorbent and has a 

slight influence on productivity. The breakthrough time increases little with the increase in porosity, since 

better contact with the adsorbent favours the adsorption process, taking longer for the bed to saturate. 

The effects of mass transfer coefficient (MTC) on performance indicators are found in Figure 3h, where a 

slight increase in purity is observed with the increase in MTC, since it provides an adsorption process more 

effective. Regarding productivity, it is observed that this variable is subtly impacted in a positive way. With 

increasing MTC, the adsorption process is more efficient, increasing the time required for the bed to saturate. 

For the simulation to obtain good results, as it is a batch process, it is necessary to be aware of the simulation 

operating time and the breakthrough time, since operating in times greater than the breakthrough point will 

result in ethanol with lower purity and quality. The isotherm parameters adopted also impact the final results, 

as they contribute to the interaction of molecules with the adsorbent bed and with the profiles in the column. 

Other values found in the open literature must be evaluated to verify the process performance and this should 

be carried out in the simulation environment. This is barely found in the literature and this information is 

important because industrial data (design details and operating values) are usually not available.  

4. Conclusions 

The simulations were able to purify ethanol to be used as an additive to gasoline, according to the regulations 

of the countries, proving the efficiency of the adsorption process in molecular sieves. The effects of the 

different system variables were evaluated through sensitivity analysis, in which it was possible to verify that 

the variables with the greatest impact on the results and performance indicators are the column diameter and 

the feed flow rate, while the ones with the lowest impact are the temperature and the mass transfer coefficient. 
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