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The effect of product purity on product flowrate, oxygen recovery, adsorbent productivity, and specific energy 

demand was investigated for the adsorption pressure of 5.5 bar (g). The experiments were carried out for zeolite 

molecular sieve UOP MOLSIV™ PSAO2 XP (UOP LLC, Honeywell) with N2/O2 enhanced selectivity in the pilot-

plant adsorption unit using two-bed pressure swing adsorption technology. The oxygen recovery, adsorbent 

productivity, and specific energy demand were found in the range of 0.44 to 0.32, from 205 to 286 kg tO2-1 d, 

and from 0.556 to 0.767 kWh NmO2
-3, respectively, for oxygen purity in the product stream increasing from 89 

to 94.7 %. 

1. Introduction 

The Pressure Swing Adsorption (PSA) units are widely used as an oxygen source where oxygen is produced in 

gaseous form. The start-up time of minutes is an undeniable advantage of PSA technology compared to 

cryogenic air separation, which has a start-up time of hours or days. Nitrogen-selective zeolites 5A and 13X are 

the most commonly used for oxygen separation from the air (Chin et al., 2023). Using nitrogen-selective zeolites, 

the oxygen content in the product gas is limited to 95 %. The rest of the product stream is mainly argon. The 

composition of the exhaust gas is approximately 85 – 90 % nitrogen and 10 – 15 % oxygen (Banaszkiewicz and 

Gizicki, 2020). Argon-oxygen selective silver-modified X-zeolites or carbon molecular sieves are used as 

adsorbents (Santos et al., 2007) to obtain higher oxygen purity. To this day, lithium-doped silica zeolites (Li-

SLX) are considered the best adsorbents for PSA/VPSA oxygen production (Chin et al., 2023).  Today, zeolites 

modified by a single cation (Yang et al., 2019) or mixed cations (Epiepang et al., 2019) are investigated as 

potentially better alternatives.  

Zhu et al. (2017) developed a novel rapid vacuum pressure swing adsorption process (RVPSA) with 

intermediate gas pressurization for oxygen production. For 90 % oxygen purity, they reported 29.45 % oxygen 

recovery and a bed size factor of 82.84 kg tO2
-1 d for the adsorption and desorption pressures of 240 kPa and 

60 kPa, respectively. The Li-LSX was used as an adsorbent. Banaszkiewicz and Chorowski (2018) 

experimentally analysed the dependence of energy consumption on oxygen purity in a mobile pilot unit utilizing 

vacuum-pressure-temperature swing adsorption Technology (VPTSA) for air separation. They found energy 

consumption of 892 kWh tO2
-1 for oxygen of 94 % oxygen purity. Gizicki and Banaszkiewicz (2020) analyzed 

experimentally energy consumption with the use of a commercially available oxygen-PSA generator using 5A 

zeolite. They reported an energy consumption of 1,450-1,530 kWh t-1 for the adsorption pressure of 5.5 bar (g) 

and 95 % oxygen. 

The effect of product purity on product flowrate, oxygen recovery, adsorbent productivity, and specific energy 

demand was investigated for the adsorption pressure of 5.5 bar (g) in the pilot-plant adsorption unit using zeolite 

molecular sieve UOP MOLSIV™ PSAO2 XP (UOP LLC, Honeywell) with N2/O2 enhanced selectivity. 

1.1 Experimental set-up 

The pilot plant adsorption unit O2 (manufactured by OXYWISE Ltd., Slovakia) was used to carry out all the 

experiments. The adsorption unit utilizes two-bed Pressure Swing Adsorption technology. The nominal capacity 
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of this unit is 1.3 kg/h of gaseous oxygen with a purity of 95 % oxygen. The PSA units require an inlet air quality 

of class 1.4.1 (solid particles, air humidity, oil). It is necessary to treat compressed air to achieve air quality. A 

refrigeration air drying produces an air of the required pressure dew point of +3 °C. The adsorption unit schema 

is shown in Figure 1a. The parameters of the main components are described in Šulc and Kos (2022) in detail. 

The experiments were carried out for the porous zeolite molecular sieve UOP MOLSIV™ PSAO2 XP (UOP LLC, 

Honeywell) with N2/O2 enhanced selectivity. Adsorbent particles are homogeneous spheres of 2 mm diameter 

(8×12 mesh) with a bulk density of 656.8 kg/m3. The adsorbent properties are presented in Table 1. The weight 

of the adsorbent in the column was approximately 8.69 kg. The standard cycle consists of these sequential 

steps: 1) equalization, 2) pressurization, 3) production, 4) equalization, and 5) purging. At present, the 

industrially used cycles combine pressurization and production steps, as demonstrated in Figure 1b. The 

following time intervals were used for the experiment: i) 48 s for the pressurization, ii) 19 s for the equalization, 

and iii) 24 s for the production step.     

 

 

 

a) technological scheme b) the adsorption cycle scheme  

Figure 1: Pilot-plant adsorption unit: a) the technological scheme, b) the scheme of the adsorption cycle used 

for columns C1 and C2: E-equalization, P-pressurization, Pr-production, and Pu-purging 

Table 1: Properties of UOP MOLSIV™ PSAO2 XP 

Particle 

diameter  

(m) 

BET surface 

area  

(m2 g-1) 

Outer 

surface area  

(m2 g-1) 

Micropore 

area  

(m2 g-1) 

Pore  

volume   

(m3 g-1) 

Micropore  

volume  

(m3 g-1) 

Particle 

porosity  

(-) 

Bulk  

density 

(kg m-3) 

Particle 

density 

(kg m-3) 

0.002 522.8 40.2 246.7 3.47×10-4 2.47×10-4 0.38 678.96 1095.1 

 

1.2 Experimental data 

The mass gas flow rate, the volumetric concentrations of oxygen and CO2, and the dew point were measured 

in the air and product gas streams for the adsorption pressure of 5.5 bar (g). The oxygen flowrate in the product 

stream was changed in the range from 1.4 to 2.0 kg h-1 using the product stream regulation valve. A total of 13 

datasets were recorded.  

Each dataset lasts approximately 23 minutes. For each selected oxygen flowrate, the data set was recorded in 

a steady state. The mean mass flowrate was calculated using internal integration built into the flowmeter for 

each dataset as follows: 

( ) )/( 1212 ttTMTMMF −−= , (1) 

where TM1 (t1) and TM2 (t2) are the total weights recorded by the flowmeter at the beginning and the end of the 

dataset respectively. The mean values of the other measured quantities such as oxygen content, dew point, 

temperature, etc. were calculated by averaging instantaneous values recorded by sensors. The calculated mean 

values of the selected measured quantities are presented in Table 2.  
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Table 2: Experimental data – mean values evaluated 

Dataset 

No. 

Oxygen content  

(% mol.) 

Mass flowrate  

(kg h-1) 

CO2  content  

(ppm) 

Dew point  

(°C) 

 Air Product 

stream 

Exhaust  

stream 

Air Product  

stream 

Air Product 

steam 

Air Product 

stream 

1 21.04 94.65 16.76 17.1 1.35 577 0.2 −0.8 −79.2 

2 21.04 94.5 16.3 17.4 1.45 521 0.06 −0.9 −79.3 

3 21.04 94.55 15.89 17.6 1.5 518 0.11 −1.0 −79.0 

4 21.04 94.38 15.29 17.5 1.55 525 0.11 −1.0 −79.5 

5 21.04 94.46 15.46 17.6 1.55 522 0.09 −1.1 −79.0 

6 21.04 94.31 14.86 17.6 1.59 508 0.11 −1.1 −79.4 

7 21.04 94.05 14.64 17.3 1.6 532 0.17 −1.0 −78.7 

8 21.09 93.29 13.53 17.2 1.7 531 0.23 −1.0 −79.1 

9 21.05 93.56 13.76 17.4 1.71 548 0.18 −1.1 −79.0 

10 21.09 91.97 12.59 17.3 1.82 527 0.23 −1.1 −79.1 

11 21.08 91.99 12.63 17.1 1.79 519 0.28 −0.8 −78.9 

12 21.07 90.98 12.03 17.3 1.87 519 0.23 −1.0 −78.6 

13 21.05 89.44 11.62 17.4 1.99 531 0.11 −1.0 −79.2 

2. Results and Discussion 

2.1 Product stream composition  

The following quantities are usually measured in the product stream: i) oxygen content, ii) CO2 content, and iii) 

water content. The question arises as to what is the remaining content of the product stream. As reported in the 

literature, using nitrogen-selective zeolites (type A and type X zeolites), the oxygen purity is limited to 95% 

oxygen in the product stream and the rest of the product stream is mainly argon. The composition of the product 

stream is usually not fully presented. Beeyani et al. (2010) modelled the PSA process assuming that the 

proportion between argon and oxygen is the same both in the air stream and in the product stream, i.e. 

productO

productAr

airO

airAr

n

n

n

n

−

−

−

− =
22








, (2) 

Eq. (2) can be rearranged as follows:  

productO

airO

airAr
productAr y

y

y
y −

−

−
− = 2

2

, (3) 

where yAr (-) and yO2 (-) are mole fractions of argon and oxygen, respectively, in the air stream or the product 

stream. Thus, with an increase in the product stream flowrate, the concentration of argon and oxygen will 

decrease in the same manner in the product stream as the nitrogen manages to break the adsorption bed into 

the product stream. This assumption was based on the known fact that the sorption isotherms for argon and 

oxygen are the same for zeolite molecular sieves as reported by Yang (2003). Therefore, two hypotheses were 

tested: i) the product stream contains only oxygen and argon (noted Hypothesis No. 1), and ii) the product 

stream contains the same proportion of oxygen and argon as in the air stream (noted Hypothesis No. 2). The 

mass balance was performed under the following two assumptions: i) the water content was neglected in all 

streams, and ii) the CO2 content in the product gas was omitted owing to its negligible concentration. The 

calculated composition of the product stream and the exhaust stream is presented in Table 3 and Table 4 for 

both hypotheses.   

The argon content was found to be the best quantity for the hypothesis assessment. Assuming that there is no 

nitrogen in the product stream, the argon content calculated in the product stream for oxygen purity less than 

90 % reached the negative value which is meaningless. Therefore, the postulate proposed by Beeyani et al. 

(2010) seems to be more reliable than the postulate anticipating the presence of oxygen and argon in the product 

stream only.  

On the other side, it should be noted that the oxygen content calculated in the exhaust stream varied in the 

range from 1.4 to 12 % from the measured value for both hypotheses. 
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Table 3: Stream composition – hypothesis No. 1*1 

Dataset  Product stream Exhaust stream 

No. oxygen *2 

(% mol.) 

nitrogen*3 

(% mol) 

argon*3 

(% mol.) 

oxygen *2 

(% mol.) 

oxygen *3 

(% mol.) 

relative  

error *4 (%) 

nitrogen*3 

(% mol) 

argon*3 

(% mol.) 

CO2
*3 

(ppm) 

1 94.65 0 5.35 16.76 15.47 8.3 83.87 0.6 621 

2 94.5 0 5.50 16.30 15.14 7.7 84.24 0.56 563 

3 94.55 0 5.45 15.89 14.96 6.3 84.43 0.56 561 

4 94.38 0 5.62 15.29 14.77 3.5 84.64 0.53 570 

5 94.46 0 5.54 15.46 14.81 4.4 84.6 0.54 566 

6 94.31 0 5.69 14.86 14.62 1.6 84.81 0.51 553 

7 94.05 0 5.95 14.64 14.48 1.1 84.98 0.48 580 

8 93.29 0 6.71 13.53 14.14 −4.3 85.43 0.37 582 

9 93.56 0 6.44 13.76 14.09 −2.3 85.45 0.4 600 

10 91.97 0 8.03 12.59 13.81 −8.8 85.93 0.2 581 

11 91.99 0 8.01 12.63 13.8 −8.4 85.94 0.2 573 

12 90.98 0 9.02 12.03 13.63 −11.8 86.24 0.07 574 

13 89.44 0 10.56 11.62 13.4 −13.3 86.24 -0.15 591 

Note: *1 Argon content of 0.93 mol % in dry air. *2 Measured value. *3 Calculated value. *4 Related to the calculated value. 

Table 4: Stream composition – hypothesis No. 2*1 

Dataset  Product stream Exhaust stream 

No. oxygen *2 

(% mol.) 

nitrogen*3 

(% mol) 

argon*3 

(% mol.) 

oxygen *2 

(% mol.) 

oxygen *3 

(% mol.) 

relative  

error *4 (%) 

nitrogen*3 

(% mol) 

argon*3 

(% mol.) 

CO2
*3 

(ppm) 

1 94.65 1.16 4.18 16.76 15.45 8.5 83.81 0.68 621 

2 94.5 1.33 4.18 16.30 15.11 7.9 84.17 0.67 563 

3 94.55 1.27 4.18 15.89 14.93 6.5 84.36 0.66 561 

4 94.38 1.45 4.17 15.29 14.73 3.8 84.56 0.65 570 

5 94.46 1.37 4.17 15.46 14.77 4.7 84.52 0.65 566 

6 94.31 1.53 4.17 14.86 14.58 1.9 84.72 0.64 553 

7 94.05 1.79 4.16 14.64 14.43 1.4 84.87 0.64 580 

8 93.29 2.6 4.11 13.53 14.07 −3.8 85.25 0.62 582 

9 93.56 2.31 4.13 13.76 14.02 −1.9 85.3 0.62 601 

10 91.97 3.98 4.06 12.59 13.69 −8.0 85.65 0.6 582 

11 91.99 3.95 4.06 12.63 13.68 −7.6 85.66 0.6 574 

12 90.98 5 4.02 12.03 13.48 −10.8 85.87 0.6 575 

13 89.44 6.61 3.95 11.62 13.19 −11.9 86.17 0.58 592 

Note: *1 Argon content of 0.93 mol % in dry air. *2 Measured value. *3 Calculated value. *4 Related to the calculated value. 

 

2.2 Air factor, oxygen recovery, and adsorbent productivity 

Some manufacturers of oxygen PSA generators use the term ‘air factor’. The air factor is the air ratio defined 

as the ratio of the air flowrate at the PSA inlet to the gaseous oxygen stream that is produced (GOX), i.e. product 

gas: 

N

GOX

N

air VVAirF  /= , (4) 

where AirF is the air ratio (Nm3 Nm-3),  V•N
air is the volumetric airflow rate at the PSA unit inlet under standard 

conditions (Nm3 s-1), V•N
GOX is the volumetric flowrate of the gaseous oxygen stream (GOX) produced by the 

PSA unit under standard conditions (Nm3 s-1).  

The oxygen recovery is defined as the ratio of the oxygen flowrate in the air entering the PSA unit to the oxygen 

flowrate in the product stream (GOX): 

AirFy

y

ny

ny

n

n
R

airO

productO

airairO

productproductO

airO

productO

O

1

2

2

2

2

2

2

2 =
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
==

−

−

−

−

−

−








, (5) 

where yO2-product  is the mole fraction of oxygen in the product stream (-), n•
product is the molar flowrate of the 

product stream (kmol s-1), yO2-air is the mole fraction of oxygen in the air fed to the PSA unit (-), and n•
air is the 
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molar air flowrate (kmol s-1). The adsorbent productivity is characterized by the bed size factor which is defined 

as the ratio of adsorbent weight to the oxygen flow in the product stream (GOX): 

)4.22/(222

N

airproductOO

adsorbent

productO

adsorbent

V

AirF

yM

m

m

m
BSF





==

−−

, (6) 

where BSF is the bed size factor (kgadsorbent kgO2
-1 d), MO2 is the molar weight of oxygen (kg kmol-1), and V•N

air 

is the volumetric airflow rate at the PSA unit input under standard conditions (Nm3 d-1). 

The calculated values for air factor and oxygen recovery are presented in Table 5 for each dataset. 

Table 5: Process characteristics – air factor, oxygen recovery, and specific energy demand*2  

Dataset 

No. 

Oxygen purity *1 

(% mol.) 

Air factor 

(kmol kmol-1) 

Oxygen recovery  

(-) 

Specific energy 

(kJ kgO2
-1) 

 demand 

(kWh NmO2
-3) *3 

1 94.65 14.2 0.32 3,675 0.767 

2 94.5 13.4 0.34 3,478 0.726 

3 94.55 13 0.35 3,384 0.707 

4 94.38 12.6 0.36 3,287 0.686 

5 94.46 12.7 0.35 3,306 0.69 

6 94.31 12.3 0.36 3,214 0.671 

7 94.05 12 0.37 3,147 0.657 

8 93.29 11.3 0.39 2,972 0.621 

9 93.56 11.3 0.39 2,971 0.62 

10 91.97 10.6 0.41 2,828 0.591 

11 91.99 10.6 0.41 2,825 0.59 

12 90.98 10.2 0.42 2,759 0.576 

13 89.44 9.7 0.44 2,663 0.556 

Note: *1 Oxygen content in the product stream. *2 Data calculated for the mass balance obtained by hypothesis No. 2. *3  

Conversion factor: 1 kJ kgO2
-1 = 2.08810-4 kWh Nm-3

O2. 

 

The effect of bed size factor air ratio on oxygen purity was evaluated as follows: 

( ) ( )  70/1
7070426.0

2 947.00926.0100(%)
−

−−
+= BSFpurityO  (7) 

where O2 purity is oxygen purity in the product gas (GOX), and BSF is the bed size factor (kgadsorbent tO2
-1 d). The 

comparison of experimental data and the proposed correlation is presented in Figure 2a. 

  

a) bed size factor b) specific energy demand 

Figure 2: Process characteristics: a) bed size factor, b) specific energy demand 

2.3 Specific energy demand  

The specific energy demand (kJ kgO2
-1) was calculated as follows: 
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where Pc is compressor electrical power input (kW), m•
O2-product is the oxygen flowrate in the product gas (kg s-

1), c is the overall compressor efficiency, p1 is the inlet air pressure (kPa), V•
air1 is the air flowrate (m3 s-1) at 

inlet conditions (temperature t1, pressure p1), p2 is the outlet air pressure (kPa),  is Poisson constant (-). 

The specific energy consumption was calculated for an air intake temperature of 20°C and pressure of 101.325 

kPa, and outlet pressure of 650 kPa, %,  = 1.4, c = 0.76. The overall compressor efficiency was estimated 

using datasheet data for the Kaeser compressor (Kaeser Kompressoren, 2022). For the eSC calculation, the 

pressure losses were neglected and compression work was only taken into account. The calculated eSC values 

are presented in Table 5 for each dataset. As expected, when the energy losses on the valves are omitted, the 

specific energy consumption needed for the product separation is inversely proportional to the oxygen recovery, 

as evidenced in Figure 2b. The specific energy demand estimated for the 94 % oxygen purity is comparable 

with the results presented by Banaszkiewicz and Chorowski (2018) for the VPTSA technology. The specific 

energy demand estimated for 95 % purity is approximately 1/3 less compared to data for 5A zeolite presented 

by Gizicki and Banaszkiewicz (2020) for the same adsorption pressure. 

3. Conclusions 

The effect of product purity on product flowrate, oxygen recovery, adsorbent productivity, and specific energy 

demand was investigated for the adsorption pressure of 5.5 bar (g) in the pilot-plant adsorption unit using two-

bed pressure swing adsorption technology. The oxygen recovery, adsorbent productivity, and specific energy 

demand were found in the range of 0.44 to 0.32, from 205 to 286 kg tO2-1 d, and from 0.556 to 0.767 kWh NmO2
-

3, respectively, for oxygen purity in the product stream increasing from 89 to 94.7 %. The specific energy demand 

estimated for 95 % purity is approximately 1/3 less compared to data for 5A zeolite presented by Gizicki and 

Banaszkiewicz (2020) for the same adsorption pressure. This finding confirms the expected better performance 

of UOP MOLSIV™ PSAO2 XP (UOP LLC, Honeywell) with N2/O2 enhanced selectivity. The estimated specific 

energy demand for 94 % oxygen purity is comparable with the results presented by Banaszkiewicz and 

Chorowski (2018) for the VPTSA technology. Simultaneously, the two hypotheses regarding product stream 

composition were tested. The assumption proposed by Beeyani et al. (2010) seems to be more reliable than 

the postulate anticipating the presence of oxygen and argon in the product stream only. 
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