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Open Tubular Hydrodynamic Chromatography (OTHDC) is currently limited by two shortcomings, namely the 

low selectivity and the large values of the Height Equivalent of the Theoretical Plate (HETP) caused by the 

Taylor-Aris dispersion. Recently, these authors and co-workers, (Biagioni and Cerbelli, 2022) have shown the 

possibility to contain the Taylor-Aris effect by inducing transversal velocity components superimposed to the 

main pressure-driven axial flow in a square channel. It was found that the separation efficiency can be enhanced 

by a 50-fold factor introducing a transversal DC-electroosmotic flow characterized by two symmetrical vortices. 

Considering the significant improvement obtained, the possibility to increase the efficiency of OTHDC by 

inducing different transversal flows is here investigated. Different transversal flows can be generated by placing 

electrode pairs in different configurations along the walls of the channel and by treating the walls with different 

coatings that make them charged or uncharged. It is found that all the types of transversal flows studied can 

improve the separation efficiency of OTHDC. The best performance is provided by the transversal flow 

characterized by four symmetrical vortices, which yield an improvement of the separation efficiency by a factor 

of up to one hundred times compared to standard OTHDC in the range of operating conditions considered. 

1. Introduction 

Open Tubular Hydrodynamic Chromatography (OTHDC) is a microfluidic size-based separation technique. It 

can be used to separate particles ranging from tens of nanometers to few micrometers. Examples of separation 

targets are DNA fragments (Wang et al., 2021) or polymer mixtures (Tijssen et al., 1983). OTHDC columns 

consist of an open channel with a characteristic cross-sectional dimension between 1-30 μm. Due to the 

micrometric size of the channel cross-section, the Reynolds number (𝑅𝑒) of the eluent (which is forced through 

the channel by an overall pressure drop) is below unity. Therefore, the momentum transport equations satisfy 

the Stokes flow regime. The separation mechanism of OTHDC is based on the interaction between the non-

uniform axial flow, transverse diffusion, and hindrance effects due to the finite size of particles that must be 

separated. Due to transverse diffusion, particles move across all the possible flow streamlines, thus averaging 

out the axial velocity profile of the eluent as they flow downstream the channel. At the same time, particles are 

prevented from experiencing the low velocity streamlines close to the channel walls due to the hindrance 

associated with their finite size. The larger the particles, the larger the excluded low-velocity region. As a result, 

the driving force of OTHDC is based on the increasing function of average particle velocity with respect to 

particle size (Brewer, 2021). Figure 1 depicts the separation mechanism of OTHDC.   

 

Figure 1: Separation mechanism of pressure driven OTHDC. 

OTHDC separation mechanism is based on the difference between the average particle velocities (henceforth 

selectivity). The dependence of the average particle velocity on the particle size is typically weak. For this 
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reason, the selectivity is low and OTHDC is characterized by low efficiency. Consequently, OTHDC requires 

lengthy channels to achieve a unitary resolution between two species. Further, the low efficiency is caused by 

the well-known Taylor-Aris effect, which increases the Height-Equivalent of the Theoretical Plate (henceforth 

𝐻𝐸𝑇𝑃𝑝) as the eluent velocities increase. The 𝐻𝐸𝑇𝑃𝑝 can be defined as the squared dispersion bandwidth of 

particles of finite size recorded at a given time after the injection scaled to the distance traveled by the peak of 

the distribution in the same time interval. Therefore, 𝐻𝐸𝑇𝑃𝑝 is a measure of dispersion bandwidth of the species. 

In this regard, the separation resolution of OTHDC between two species "1" and "2" can be expressed as the 

ratio between the selectivity and the dispersion bandwidth of the two species. Various strategies to mitigate 

axial dispersion have been reported in the literature. The effect of the cross-section of the channel on the 

dispersion bandwidth of finite-size particles has been investigated by Biagioni et al., (2022). However, the most 

efficient way to contain the dispersion bandwidth has been reported by Zhao and Bau, (2007) and by Adrover 

(2013) in theoretical/numerical studies. They showed how the impact of axially invariant cross-sectional vortices 

generated by DC and AC-electroosmosis can contain the dispersion bandwidth of nonadsorbing solutes in a 

square channel. After nearly fifteen years, De Malsche and co-workers have experimentally demonstrated the 

positive effect of lateral vortices induced by AC-electroosmosis (Westerbeek et al., 2020) on axial dispersion for 

non-adsorbing/adsorbing solutes. In a recent article Biagioni and Cerbelli, (2022) predicted by a theoretical-

numerical study the effects of cross-sectional flows characterized by two symmetrical vortices induced by DC-

electroosmosis on the dispersion bandwidth of finite-sized particles. A 50-fold enhancement of the separation 

efficiency has been obtained in terms of reduction of the operating time compared to the standard case of 

OTHDC. In this work, the improvement of the separation efficiency of an OTHDC operation because of different 

secondary flows on the dispersion bandwidth of finite-size particles will be explained. This work is organized as 

follows: Section 2 describes the fluid dynamic problem, Section 3 explains the finite size particle transport model 

based on the Brenner Macro transport theory (Brenner et al., 1993), and finally, Section 4 shows the effect of 

different secondary flows on the separation efficiency of OTHDC for two different pairs of particle sizes. 

2. System geometry and flow structures 

A microchannel characterized by a square cross-section Ω and overall length 𝐿∗ has been considered. The 

coordinates are made dimensionless with respect to the characteristic size of the cross-section, so that they can 

be considered in the interval [0,1]𝑋[0,1]𝑋[0, 𝐿]. A one-way coupling approximation is enforced throughout, where 

it is assumed that the suspended particles do not significantly perturb the flow structure, hence, the momentum 

transport can be considered as a single-phase problem. Due to the micrometric size of the channel cross-

section, the Reynolds number is well below one, so the momentum transport is in the creeping flow regime. The 

velocity field is given by coupling an axial pressure-driven flow and an electrokinetically-induced transverse flow. 

Thus, an overall pressure drop is applied between the inlet and the outlet of the channel. Hence, the axial 

velocity component 𝑤(𝑥, 𝑦) can be determined solving a two-dimensional Poisson problem with no-slip boundary 

conditions enforced onto the walls of the cross-section:     

                                                            ∇⊥
2 𝑤 =

𝜕𝑃

𝜕𝑧
               𝑤|𝑥=0,1  =  𝑤|𝑦=0,1  =  0                                      Eq. 2.1 

where ∇⊥
2 =

𝜕2

𝜕𝑥2 +
𝜕2

𝜕𝑦2  is the cross-sectional Laplacian operator. 

The transverse flow 𝒗⊥(𝑢(𝑥, 𝑦), 𝑣(𝑥, 𝑦)) follows the two-dimensional Stokes equation 

                                                                   ∇⊥
2 𝑣 = ∇⊥𝑃                                                                               Eq. 2.2 

coupled with slip/no-slip boundary conditions depending on the position of the electrode pair and the charges of 

the walls. Considering a pair of electrodes placed along opposite horizontal walls, if the right wall is positively 

charged, the boundary conditions become: 

𝑢|𝑥=0,1 = 𝑢|𝑦=0,1 = 0    𝑣|𝑥=0 = 𝜈   𝑣|𝑥=1 = 0 𝑎𝑛𝑑 𝑣|𝑦=0,1 = 0 

If two electrodes-free walls are oppositely charged, the boundary conditions become 

𝑢|𝑥=0,1 = 𝑢|𝑦=0,1 = 0   𝑣|𝑥=0 = 𝜈, 𝑣|𝑥=1 = −𝜈 𝑎𝑛𝑑 𝑣|𝑦=0,1 = 0 

Finally, if half of the right and left walls are positively charged and the other half is negatively charged the 

boundary conditions are given by: 

𝑢|𝑥=0,1 = 0,    𝑢|𝑦=0,1 = 0, 𝑣|𝑥=0,1,𝑦𝜖[0−0.5] = 𝜈 𝑣|𝑥=0,1,𝑦𝜖[0.5−1] = −𝜈   

Where 𝜈 is the ratio between Vs (the Smoluchowsky velocity consistent with the thin double layer approximation 

(Lyklema, 2005) and the axial average velocity (𝑈). The ratio 𝜈 has been set equal to one. The boundary value 

problems characterized by Eq.2.1 and Eq. 2.2 and the corresponding boundary conditions have been solved 

using a finite element solver (COMSOL Multiphysics 5.5).  
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Figure 2: Panels (a), (b) and (c) depict the cross-sectional velocity profiles (𝒗⊥) and cross-sectional arrows  

𝒘(𝒙, 𝒚). Panel (d) shows the axial velocity profile. 

Panels (a), (b), (c) of Figure 2 depict the three different transverse flows: (a) cavity-flow, (b) 1-vortex flow, (c) 4-

vortex flow. Panel (d) depicts the axial flow. 

3. Transport model 

This section briefly explains the theoretical transport model based on the Brenner Macro transport theory to 

estimate the separation performance of a chromatographic experiment, here expressed as the minimum length 

or the minimum operation time required to achieve a complete separation of a two-particle mixture. Particle 

dynamics can be evaluated by enforcing the one-way-coupling and the overdamped regime approximation 

(Maxey and Riley, 1983). The finite size of the particles can be taken into account by the excluded volume 

model. The excluded-volume model is based on the introduction of a particle transport domain (Ω𝑟𝑝
) obtained 

by excluding a part of the volume normal to the solid walls of thickness equal to the particle radius. Brenner 

macro transport theory yields the axial transport properties (averaged over the channel cross-section) of the 

long-term dynamics of a particle distribution which is characterized by a Particle Number Density (PND), 

𝑐(𝑥, 𝑦, 𝑧, 𝑡), where 𝑐(𝑥, 𝑦, 𝑧, 𝑡)𝑑𝑉 is the fraction of particles into an elementary volume 𝑑𝑉 about (𝑥, 𝑦, 𝑧) at time 𝑡. 

Initially, 𝑡 = 0 , the PND is described by a uniform distribution 𝑐0(𝑥, 𝑦, 𝑧, 𝑡 = 0), then the PND is governed by a 

micro transport advection-diffusion equation  

                                                                               
𝜕𝑐

𝜕𝑡
+ 𝑣 ⋅ ∇𝑐 =

1

𝑃𝑒𝑝
∇2𝑐                                                                           Eq.3.1 

equipped with no-flux boundary conditions on the boundary of the effective transport domain Ωrp
.In Eq.3.1,  𝒗 

and Pe𝑝 are the velocity field of the eluent and the particle Peclet number. The velocity field, 𝒗, can be determined 

as discussed in the previous section. The particle Peclet number, Pe𝑝, is definite as Pe𝑝 = U H/𝒟𝓅 where U is 

the average axial velocity, 𝐻 is the characteristic size of the cross-channel section, and 𝒟𝓅 the particle diffusivity. 

The latter can be quantified by the Stokes-Einstein equation as 𝒟𝓅 = 𝑘𝐵  𝑇/(6𝜋𝜇𝑟𝑝), where 𝑘𝐵 , 𝑇, and 𝜇 are the 

Boltzmann constant, the absolute temperature, and the dynamic viscosity, respectively. The micro transport 

advection-diffusion equation must be solved into the entire three-dimensional domain. In the case of OTHDC, 

the device is long thousands of times the characteristic size of the cross-channel section. This makes the 

approach to numerical solution of Eq. (3.3) unfeasible due to the large number of degrees of freedom necessary 

to obtain an accurate numerical solution. In this regard, the fundamental results of the Brenner macro transport 

theory is that the PND approaches, on the long-time scales, to a marginal distribution 𝐶(𝑧, 𝑡) =

∫ 𝑐(𝑥, 𝑦, 𝑧, 𝑡)
Ω𝑟𝑝

 𝑑𝑥𝑑𝑦/ ∫ 𝑑𝑥
Ω𝑟𝑝

𝑑𝑦 that follows an effective transport equation 

                                                                             
𝜕𝐶

𝜕𝑡
+ 𝑊𝑝

eff 𝜕𝐶

𝜕𝑍
=

1

Pep
eff

𝜕2𝐶

𝜕2𝑍
                                                                             Eq.3.2 

Where 𝑊𝑝
eff and 1/Pe𝑝

eff are the dimensionless effective velocity and dispersion coefficient related to a particle of 

a given size. The effective parameters can be estimated by solving two cascade boundary value problems 

(BVP), which are explained below. In the first one, a steady-state concentration 𝐶∞(𝑥, 𝑦) = ∫ c(x, y, z, t)
∞

0
 dz (the 

cross-section distribution projected onto a generic transversal section) must be introduced. From Eq.3.1  

𝐶∞(𝑥, 𝑦) is the solution of  

                                         ∇⊥ ⋅ 𝐽∞ = 0;  𝐽∞ = 𝑣⊥ 𝐶∞ −
1

Pep
∇⊥𝐶∞     𝑤𝑖𝑡ℎ     𝐉∞ ⋅ 𝐧 = 0   |𝜕Ω𝑟𝑝

                                                Eq.3.3 

The second BVP requires the introduction of a new function, the b-field 𝑏(𝑥, 𝑦), namely, the solution of the 

following advection-diffusion equation coupled with no-flux boundaries condition on the walls of the effective 

domain 

  (∇⊥⋅
1

𝑃𝑒𝑝
𝐶∞∇⊥𝑏) − 𝐽∞ ⋅ ∇⊥𝑏 = 𝐶∞(𝑊𝑝

𝑒𝑓𝑓
− 𝑤)                   with  (𝐽∞𝑏 −

1

𝑃𝑒𝑝
𝐶∞∇⊥𝑏)   ⋅ 𝑛 = 0                 Eq.3.4                                                                                                                       
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Once 𝐶∞(𝑥, 𝑦)  and 𝑏(𝑥, 𝑦) have been determined the effective transport parameters can be estimated as:  

             𝑊𝑝
eff = ∫ 𝑤

Ω𝑟𝑝
 𝐶∞ 𝑑𝑥 𝑑𝑦              HETP𝑝 =

1

Pe𝑝
eff =

1

Pe𝑝
+ ∫ 𝐶∞(∇⊥𝑏 ⋅ ∇⊥𝑏) 𝑑𝑥 𝑑𝑦

Ω𝑟𝑝
          Eq.3.5                                                                                                                                               

The two BVP problems can be solved numerically by using a finite solver COMSOL Multiphysics 5.5. Once the 

effective parameters have been estimated the minimum length, 𝐿, necessary to achieve a unitary resolution, 

namely, a complete separation of the two-particle mixture can be computed from: 

𝑅 =
1

2

|
1

𝑊1
eff

−
1

𝑊2
eff

|√𝐿

√
2

𝐻𝐸𝑇𝑃1(𝑊1
eff)

3+√
2

𝐻𝐸𝑇𝑃2(𝑊2
eff)

3

= 1                                                                                                                                       Eq.3.6 

Thus, Brenner’s macro transport theory provides a theoretical framework for analysing a chromatographic 

experiment and for designing a microdevice where a given resolution value between two particle sizes can be 

achieved. In the next section, the effects of the interplay between the pure axial flow and the transversal flows 

(see Fig.2) on the effective parameters and the separation performance to varying the operating conditions for 

three particle sizes: 𝑟𝑝1
= 𝑑𝑝1

/(2𝐻) = 1/20, 𝑟𝑝2
= 𝑑𝑝2

/(2𝐻) = 1/40, and 𝑟𝑝3
= 𝑑𝑝3

/(2𝐻) = 1/80 will be showed. 

4. Results                                                           

4.1 C∞-Distribution and Effective Particle Velocity 

The interaction between the transversal flows, particle diffusion, and particle size leads to localization effects in 

the solution of Eq. 3.3, 𝑪∞. The localization effect is due to the no-flux boundary condition (𝐉∞ ⋅ 𝐧 = 0 |𝜕Ω𝑟𝑝
) 

imposed on the boundary effective walls of the effective domain, Ω𝑟𝑝
,which depends on the particle radius and 

does not match with the fluid-dynamic domain Ω. For this reason, the normal components of the transversal 

velocity field on the effective walls are not null, so a counter-diffusive concentration gradient must occur to 

counterbalance the convective particle flow to assure the no-flux boundary conditions. The larger the particle 

radius, the larger the finite distance from the walls, the larger the normal components of the transversal velocity 

field on the effective boundary and the stronger non-uniformity of 𝑪∞. When the effective domain coincides with 

the effective fluid dynamic domain (particle radius is zero) the 𝑪∞ is strictly uniform. On the other hand, when 

Pe tends to zero, the cross-sectional distribution 𝑪∞ shows an uniform distribution, in fact, Eq.3.3 becomes a 

pure diffusion equation, and the effect of the convective particle flow vanish. On the contrary, when Pe increases, 

𝑪∞ departs from the uniform distribution and the localization effects are strengthened. As can be gathered from 

Fig.3, if the particle Peclet number is increased the particles remain more and more entrapped inside the 

vortexes. Figure 3 depicts the  𝑪∞ field correspondent to Pep= 100 and 2000 for a particle size equal to 𝑟𝑝1
=

1/20 in the case of the three transversal flows considered in Sec.2.  

 

Figure 3: 𝑪∞ estimated by solving Eq.3.3 referred to 𝑟𝑝 = 0.05, at Pep= 100 and 2000. Panels (a-b) are referred 

to the cavity-flow, panels (c-d) to the 1-vortex flow and panels (e-f) to the 4-vortex flow. 

The consequence of the nonuniform structure of the 𝑪∞ is the non-monotonic behavior of 𝑊𝑝
eff depending on 

the Peclet number as shown in Fig.4. There 𝑊𝑝
eff is computed by weighting the axial average velocity with 

respect to 𝑪∞. As consequence, the selectivity becomes a function dependent on 𝑃𝑒𝑝. When 𝑃𝑒𝑝  is in the range 

between [1 − 10], the selectivity is constant regardless of the structure of the cross-section flow. In this case, 

the localization effects of  𝑪∞ become immaterial. If 𝑃𝑒𝑝 is in the range [10 − 100] the selectivity for both particle 

sizes decreases with respect to the selectivity of the OTHDC. At large values of 𝑃𝑒𝑝, the selectivity of cavity-

flow case increases and overtakes the selectivity of the OTHDC for both particle sizes. On the contrary, in the 

1-vortex flow case, the selectivity for both couples of particle size increases but only the selectivity referred to 
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the couple 𝑟𝑝1 = 0.025 and 𝑟𝑝2 = 0.0125 is enhanced with respect to the selectivity of OTHDC. In the case of 4-

vortex transversal flow, the particle velocities decrease until they reach an intersection point at 𝑃𝑒𝑝
∗ = 80. When 

this occurs, the effective velocities are equal for all the particle sizes, the selectivity goes to zero and separation 

cannot occur. If 𝑃𝑒𝑝 is larger than 𝑃𝑒𝑝
∗ , 𝑊𝑝

eff continues to decrease dependently on the particle size. The larger 

the particles, the stronger the localization effect of 𝑪∞ on the lower velocity region, the smaller 𝑊𝑝
eff. An inversion 

of the dependence of effective velocity on particle size occurs. When 𝑃𝑒𝑝 is larger than 𝑃𝑒𝑝
∗  the selectivity 

increases again, but it is always lower than that of standard OTHDC. 

 

Figure 4: Effective velocity vs Pep for 𝑟𝑝 = 0.05 (curve a), 𝑟𝑝 = 0.025  (curve b) and 𝑟𝑝 = 0.0125(curve c). The 

lines A, B, and C depict the Pep-independent) effective velocity in standard OTHDC for the same particle sizes. 

Panels a,b,c are referred to the cavity-flow, 1-vortex flow and the 4-vortexes flow, respectively. 

Thus, the interplay between the purely axial flow and the transversal-flows can cause a decrease of the 

selectivity and hence a reduction of the separation efficiency with respect to the OTHDC. In the next section, 

the consequences of the non-uniformity of 𝑪∞ on axial dispersion will be evaluated. 

4.2 Effective axial dispersion  

The scaled 𝐻𝐸𝑇𝑃𝑝 can be determined by Eq. 3.6. Panels (a-c) of Fig.5 depict the comparison between 𝐻𝐸𝑇𝑃𝑝 

for the purely axial flow (curves A-C) and in the presence of transversal flows (curves a-c). Panel (a), (b), and 

(c) refer to the cavity flow, the 1-vortex flow, and the 4-vortex flow, respectively. Curves A-a, B-b and C-c are 

referred to 𝑟𝑝3 = 0.0125, 𝑟𝑝2 = 0.025 𝑎𝑛𝑑 𝑟𝑝1 = 0.05, respectively. One can note how the maximum decrease of 

the 𝐻𝐸𝑇𝑃𝑝 is always associated with the bigger particle size. In fact, the bigger the particle, the stronger the 

localization effect of 𝑪∞. One notes that 𝐻𝐸𝑇𝑃𝑝 referred to the biggest particle decreases by almost two decades 

in the case of the cavity flow and by three decades in the case of four vortexes. However, at large 𝑃𝑒𝑝 values, 

the 𝐻𝐸𝑇𝑃𝑝 decreases in all the cases considered and it always enhances the separation performances of 

OTHDC, as shown in the next section. 

 

Figure 5: 𝐻𝐸𝑇𝑃𝑝 vs Pep for 𝑟𝑝 = 0.05 (curve a), 𝑟𝑝 = 0.025 (curve b) and 𝑟𝑝 = 0.0125 (curve c).The curves A, B, 

and C depict the 𝐻𝐸𝑇𝑃𝑝 referred to the OTHDC for the same particle sizes. Panels a,b and c are referred to the 

cavity-flow, 1-vortex flow and the 4-vortex flow, respectively. 

4.3 Separation efficiency  

Next, the interplay between the 𝑊𝑝
eff and the 𝐻𝐸𝑇𝑃𝑝 on the minimum length (𝐿) required to achieve a unitary 

resolution between a couple of particle sizes will be evaluated. In this section, Peclet number (𝑃𝑒) is referred to 

the biggest particle size to assure the same operating conditions, (i.e., the same average axial velocity), hence 

Pe=Pe𝑟𝑝1
/Pe𝑟𝑝2

= 𝑟𝑝1/𝑟𝑝2.  Figure 6 shows the comparison between the minimum length vs Pe in the case of 

OTHDC (curves A, B) and in the presence of transversal flows. Curves A-a and B-b are referred to a mixture of 

particles characterized by 𝑟𝑝1 = 0.05 and 𝑟𝑝2 = 0.025 and 𝑟𝑝1 = 0.025 and 𝑟𝑝2 = 0.0125, respectively. As one 
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can note, when 𝑃𝑒 is low, the minimum lengths required in the presence of transversal flows and in the case of 

purely axial flow coincide, i.e., the transversal flows have no impact on the device performance. When 𝑃𝑒 is in 

the middle range of values the decrease of the selectivity causes a minimum length required in the presence of 

transversal flows larger than in the standard case. In these cases, the usage of the transversal flows is 

unfavourable. Finally, at large 𝑃𝑒 values the presence of transversal flows enhances the separation 

performances of standard OTHDC. The minimum length required to assure the same resolution between 𝑟𝑝1 =

0.05 and 𝑟𝑝2 = 0.025 is provided by the presence of the 4-vortex flows and it is up to 100-fold times shorter than 

the minimum length required to purely axial OTHDC. Instead, the minimum length to obtain a unitary resolution 

between 𝑟𝑝1 = 0.025 and 𝑟𝑝2 = 0.0125 is provided by the cross-sectional cavity flow and it is more than twenty 

times shorter than standard OTHDC. 

 

Figure 6: Minimum channel length yielding a unitary resolution vs Pe. Curves A, and a are referred to the cases 

for 𝑟𝑝 = 0.05 and 𝑟𝑝 = 0.025, respectively. Curves B, and b are referred to the cases for 𝑟𝑝 = 0.025 and 𝑟𝑝 =

0.0125 Curves labelled with capital letters refer to the OTHDC. Curves a, and b are referred to the case 

characterized by the cavity-flow (Panel (a)), 1-vortex flow (Panel (b)) and the 4-vortex flow (Panel (c)). 

5. Conclusions 

In this article, the improvement due to different streamlines of cross-sectional flows generated by DC-

electroosmosis onto the separation performances of OTHDC has been shown. Different operating conditions 

and different cross-sectional flows have been analysed to find the best design and yield the maximum 

efficiency.  The best performances are provided by the cross-sectional cavity flow related to the couple of 

particles sizes (𝑟𝑝1 = 0.025 𝑎𝑛𝑑 𝑟𝑝2 = 0.0125) and by the 4-vortex flow referred to the couple of particle sizes 

(𝑟𝑝1 = 0.05 𝑎𝑛𝑑 𝑟𝑝2 = 0.025). In these cases, the length of the device can be decreased up to 20 times and 100 

times over the standard HDC, respectively. In this regard, future work will be focused on improving the 

separation efficiency by shaping the cross-sectional geometry, namely, the streamlines of the cross-sectional 

DC-electroosmotic flows or by investigating the effect of cross-sectional flows generated by AC-electroosmosis. 
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