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Water is becoming an essential commodity for human life and is one of the most important natural resources. 
Public water utilities provide more than 90 percent of the world's water supply today, so a safe water distribution 
system is critical for any city. The importance, huge capital cost of the system, and growing city size lead to 
water distribution network optimization. In this work, we propose and compare two algorithms to optimize the 
water network design of a new neighborhood of our city, where a public cooperative is in charge of this utility. 
Consequently, two metaheuristic algorithms based on Tabu Search and Simulated Annealing (SOTS and HSA, 
respectively) arise to minimize the investment cost of a water distribution network. The experimentation 
suggests that both algorithms optimize the investment cost, with results that are comparable. 

1. Introduction 
More than 90 % of the in the world’s water supply today is provided by public water services. Therefore, a safe 
drinking water distribution system is a critical element of any city. Consequently, the water distribution network 
design and optimization gain prime importance to minimize the cost and simultaneously maximize the network 
reliability and benefits. One of the design variables may be the pipe diameters, and the constraints, which are 
implicit functions of the decision variables, require solving the conservation of mass and energy to determine 
the network’s pressure heads. The solution concerning the layout, design, and operation of the network of pipes 
should result from efficient planning and management procedures. This problem is known as Water Distribution 
Network Design (WDND) and requires handling a large number of variables and constraints, and in 
consequence, is classified as NP-hard (Yates et al. 1984). 
Currently, the WDND formulations include the extension to a multi-period setting, i.e., time-varying demand 
patterns, which are more realistic and complex problem formulations. Some works expressed the design 
problem as a multi-objective optimization problem and applied a multi-objective evolutionary algorithm (Farmani 
et al. 2005). A genetic algorithm was developed to solve six small networks (Gupta et al. 1999), considering the 
velocity constraint on the water flowing through the pipes. In (Bragally et al. 2012) also regarded this constraint, 
but the authors used mathematical programming on bigger. Other metaheuristics were used to tackle more 
complex WDND formulations (Uma 2016, Mansouri & Mohamadizadeh 2017, Sedki and Ouazar 2012). An 
Iterative Local Search (ILS) (Decorte & Sörensen 2016) considered that every demand node has a 24 hrs water 
demand pattern and included a new constraint related to the limit on the maximal velocity of water through the 
pipes.  
The growth of city sizes also requires this design process, as is the case of General Pico (La Pampa, Argentina), 
which needs to optimize an independent WDND of a new neighborhood of five km2, subject to multi-period 
demands, hydraulic restrictions, among others. A public cooperative is in charge of distributing this essential 
element in this city, which requires an optimization system to determine the best engineering solution in meeting 
established design criteria and minimizing capital costs. Our research objective is to develop an optimal solution 
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based on state-of-the-art optimization algorithms, which intends to support the decision-making to design, plan, 
and manage complex water systems.  
We propose and compare Tabu Search (TS) and Simulated Annealing (SA) based metaheuristics to solve the 
WDND problem, optimizing the pipe diameters while at the same time minimizing the total investment cost. The 
TS-based method, called SOTS (Strategic Oscillations Tabu Search) adapts the constructive-destructive 
technique called Strategic Oscillation proposed by (Carnero et al. 2013) to enhance the search intensification 
and diversification capabilities. A hybrid optimization algorithm based on simulated Annealing (HSA) (Bermudez 
et al. 2019, 2021) enhanced with a local search procedure based on GRASP (Decorte & Sorensen 2016) is 
used to minimize the water network cost. We test the performance of SOTS and HSA with a real-world medium 
size distribution network. The main contributions of this work are the following: i) The adaptation of an ad hoc 
SO technique to the WDND problem (constructive and destructive phases of SOTS), and ii) Resolution of a real-
world distribution network from our community. 
The remainder of this article is summarized as follows. Section 2 introduces the problem definition and describes 
the real-world distribution network. Section 3 explains our SOTS proposal, whereas Section 4 gives the insides 
of the HSA to solve the WDND optimization problem. Section 5 describes the experimental design, the 
methodology used, and the result analysis of our proposals. The final section summarizes our conclusions and 
sketches out our future work. 

2. Multi-Period Water Distribution Network Design 
The optimal design of Water Distribution Networks (WDN) consists in finding the least-cost pipe configuration 
for a given WDN topology (node placement and network connectivity). The design of WDNs gives rise to an 
optimization problem called the WDN design optimization problem. The aim is to find the least cost design, in 
terms of optimal pipe types, that satisfies hydraulic laws and customer requirements. Consequently, the decision 
variables are the diameters for each pipe in the network. In this work, the WDN design problem is defined as 
simple-objective, multi-period, and gravity-fed one. Two restrictions are considered: the limit of water speed in 
each pipe and the demand pattern that varies in time. The network can be modelled by a connected graph 
described by a set V of k nodes, V = {v1,v2,..., vk}, and a set of edges or pipes, L = {l1,l2,..., ln} where lj represents 
the length of the j-th pipe. If the commercially available pipe types have diameters di, i=1:m with costs ICi, then 
the WDN optimal design, whose objective function is the Total Investment Cost (TIC) that can be formulated as 
follows: 

m n

ij i ij
i j

TIC l IC x
1

min
=

= ∑ ∑x  
(1) 

Where { }mxnx 0,1∈  and xij=1 if   the i-th diameter is asigned to the j-th pipe. The objective function is constrained 
by: physical laws of mass and energy, conservation, minimum pressure demand in the nodes, and the maximum 
speed in the pipes, for each time τ ∈ T (see Bermudez et al. 2021 for more details).  

2.1 A Real Water Distribution Network 

The principal motivation of this research is to get involved in solving community problems, in particular the water 
distribution network design. To provide some context, the water access problem in the province of La Pampa 
(central zone of Argentina) is a priority treatment for being a scarce natural resource. The supplier of this 
essential service in General Pico has to design an independent drinking WDN for a new neighborhood of five 
km2, minimizing the network cost through the proper selection of the pipe dimensions according to consumption 
and the physical laws of this type of problem. The WDN should cover an area identified as Zone 2 or Z2. Initially, 
the network has an extension of 1.65 km2 foreseeing for the next ten years an adjacent extension of 3.4 km2, 
identified as the zones Z1, Z3, and Z4. The network designed for Z2 is independent but requires taking into 
consideration the demand of the other zones to become an extra supply network or to receive water from them 
(bypass). 

3. SOTS to solve the WDND problem 
Tabu Search (Glover 1989) is a widespread metaheuristic approach used to solve optimization problems. The 
TS algorithm is hybridized with strategic oscillations, consisting of a sequence of two destructive and one 
constructive phase, to increase the search intensification and diversification capabilities, giving rise to SOTS 
(Strategic Oscillation Tabu Search). 
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Concerning the problem to be solved, the definition of the solution representation and a fitness function are 
required. Consequently, a solution to Eq. 1 is represented as an integer m-vector s = {s1, s2, ..., sm}, where m is 
the number of pipes present in the network. The i-th component, si, can take n different integer values, belonging 
to the set {d1, d2, ...., dn} of commercially available pipe diameters for the network. The following fitness function 
is applied where, g(s) takes into account constraint violations: 


=  +

TIC                             if      is  feasible
H

TIC g               if      is  infeasible( )
s

s s
 (2) 

The solution search space size is of mn order, if there are no additional restrictions on the pipe diameters. In 
real design problems with a large number of pipes in the network, it is necessary to have algorithms that allow 
an automatic and optimal selection of diameters for each of them. Given a feasible solution, the destructive 
phase drives the search to cross the feasibility boundary. Then move rules are modified and the constructive 
phase starts. The search returns toward the feasible region until a condition is satisfied. The use of standard TS 
mechanisms avoids going back over previous search trajectories. For the solution of the WDND represented by 
Eq.1, the local search procedure based on SOTS is described as follows. 
Let s be a candidate solution, a neighborhood N1(s) is built during the destructive phases. For the first destructive 
one, the neighborhood is the set of solutions obtained by decrementing from s one diameter if the move is 
allowable. This condition is verified when the element of the Recency-based Tabu Matrix associated with the 
diameter and the pipe is zero. That matrix has an mxn dimension, a non-zero element indicates that the move 
is forbidden because it was done to obtain a recent solution. Furthermore, its value is the number of remaining 
iterations until the Tabu Tenure Period, pt, for this move is elapsed. The second considered destructive phase 
uses the problem knowledge provided by the simulation tool. The destruction moves, as defined above, are 
performed in decreasing order for those pipes that most loosely verified the velocity and pressure constraints. 
During both destructive phases, the search crosses the feasibility boundary. Then the constructive phase 
begins, and the neighborhood N3(s) is defined as the set of solutions obtained increasing by one the i-th pipe 
diameter if the move is not tabu. The constructive phase ends after r iterations into the feasible region. 
The search information stored in this matrix is used only in the constructive phase. The evaluation function H 
corresponding to the i-th allowable increasing diameter for the j-th pipe is penalized in proportion α to the value 
of the [ i,j] element of this matrix, in order to direct the search to less frequently visited regions. After ph iterations, 
the frequency-based tabu list is reset.  
The candidate solution neighborhood cardinality is of order m, and each element of this neighborhood is 
evaluated maxiter number of times. Therefore, each run of SOTS consumes a (maxiter*m) number of function 
evaluations. The computational time associated with that procedure can be excessive for large networks. 
Therefore, raw fitness (Rfi) is computed, and solutions belonging to the neighborhood are sorted according to 
Rfi. Then a function evaluation call, which includes a simulation step, is performed. The procedure stops when 
a feasible non-tabu solution is reached, otherwise the first sorted solution is selected. Also, the best-found 
solution (s*) is saved. Aspiration criteria are applied to determine when the Tabu matrix and the frequency-
based tabu table can be overridden to avoid missing good solutions. Algorithm 1 shows the general pseudocode 
of SOTS. 

4. HSA to solve the WDND problem 

The Simulated Annealing (SA) (Kirkpatrick et al. 1983) is an optimization method, which explores through the 
solution space using a stochastic hill-climbing process. The more efficient SA formulations are based on two 
cycles: one external for temperatures and other internal, named Metropolis. The same Markov chain length in 
the Metropolis cycle is usually used for each temperature T (a control parameter with T > 0). The SA algorithm 
can be seen like a sequence of Markov chains, where each Markov chain is constructed for descending values 
of T. The HSA solver proposed to optimize the WDND problem in (Bermudez et al. 2021) is an algorithm based 
on SA, taking its advantages and adapting to the problem as the Algorithm 2 shows.  
HSA begins with the initialization of the temperature (line 2). The choice of the right initial temperature plays a 
crucial role in the HSA performance to find good solutions, this procedure is explained in (Bermudez et al. 2021, 
Hernández et al. 2019). Once the initialization process ends, an iterative process starts (lines 5 to 20). The first 
step in the iteration involves a hybridization to intensify the exploration into the current search space. In this 
way, a feasible iteration involves a hybridization to intensify the exploration into the current search space. In this 
way, a feasible solution, s1, is obtained by applying the MP-GRASP local search (De Corte and Sorensen 2016) 
to s0 (line 8), and then a greedy selection mechanism is performed (lines10-12). Therefore, s0 can be replaced 
by s1 if it is better than s0. In the next step, a perturbation operator is used to obtain a feasible neighbor, s2, from 
s0 (line 13), to explore other areas of the search space.  
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This perturbation randomly changes some pipe diameters. If s2 is worse than s0, s2 can be accepted under the 
Boltzmann probability (line 15, second condition). In this way, the search space exploration is strengthened 
when the temperature (T) is high. In contrast, at low temperatures the algorithm only exploits a promising region 
of the solution space, intensifying the search. To update T, a random cooling schedule (Bermudez et al. 2018) 
is used (line 19), which combines three traditional cooling schemes (the proportional Kirkpatrick et al. 1983], 
exponential Kirkpatrick et al. 1983], and logarithmic Hajek 1988] schemes) in only one schedule process. The 
cooling schedule is applied after a certain number of iterations (k) given by the Markov Chain Length (MCL) 
(line 18). Finally, HSA ends the search when the total evaluation number is reached or T = 0. 
 

1. Given: initial  solution s0   
2. if s0 is feasible 
3. Set Phase=1 /* destructive phase */ 
4. else 
5. Set Phase=0  /* constructive phase */ 
6. end 
7. Set s*=s= s0 

8. for i =1 to  # maxiter   
9. if  Phase =1  
10.      if   i mod 2==1 or there is no feasible solution yet. 
11.   Generate neighborhood N2(s) using specific problem knowledge  
12.  else 
13.   Generate neighborhood N1(s) by blind decrementing one diameter at a time  
14.  end 
15.  Evaluate neighborhood 
16.  Get  best neighbor s’ 
17.  if condition1=true    
18.   Phase = 0 
19.  end  
20. else 
21.  Generate neighborhood N2(s) and evaluate 
22.  Get  best neighbor s’ 
23.  if  condition2=true  
24.   Phase=1 
25.  end 
26. end  
27. s=s’ 
28. Update Recency and Frequency Tabu Matrices 
29.       if s s*    
30.  s*=s 
31. end 
32. end 
33. return s* 

Algorithm 1: SOTS algorithm to solve the WDND optimization problem. 

5. Experimental Design and Result Analysis 

This section describes the experimental design carried out to analyze the behavior of the SOTs and HSA to 
solve the WDND problem. The GP-Z2-2020 network is composed of 222 domestic demand nodes and only one 
water reservoir. For this case study, the available pipes are defined as a set of diameters D={ 63, 90, 110, 125, 
315, 400, 450, 630 }, each associated with a cost given for cost={ 2.85, 5.90, 8.79, 11.00, 69.10, 110.89, 140.15, 
273.28 }. All roughness is 110 mm. The area is residential with demand according to the current distribution of 
the customers in 584 plots but considering a development pattern. 
The daily pattern demand corresponds to the summer period (based on the model demand of historical records) 
having a maximum resolution of one hour. The total number of possible combinations of design for a set of 8 
commercial pipe types and 282 pipes is 8282 that makes the instance in a difficult case to solve; this shows the 
importance of optimization. 
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1. k = 0 
2. initTemp(T) 
3. initialize(s0) 
4. TIC0 = evaluate(s0) 
5. repeat 
6.     repeat 
7.             k = k + 1 
8.             s1 = MP-GRASPLS(s0) 
9.             TIC1=evaluate(s1) 
10.             if TIC1 < TIC0 
11.                   s0=s1      
12.                   TIC0=TIC1 
13.             end 
14.             s2 = perturbation_operator(s0) 
15.             TIC2 = evaluate(s2) 
16.             if (TIC2 < TIC0) or  (exp^{((TIC2-TIC0)/T)} > random(0,1)) 
17.                   s0 = s2   
18.                   TIC0=TIC2 
19.             end 
20.       until (k mod MCL == 0) 
21.       update(T)  
22. until stop criterion is met 
23. return s0 

Algorithm 2: HSA to solve the WDND Optimization Problem 

We present the SOTS and HSA parametric setting to solve the real-world WDND problem The SOTS parameter 
used are: pt=10, ph=20, r=4, α=0.15 and maxiter=1700. HSA employs the random cooling scheme (Bermudez 
et al. 2018) and a seed temperature set in 100 (see Bermudez et al. 2019 for a justification of this parameter 
selection). Furthermore, these both proposals use the EPANET 2.0 toolkit Rossman 1999] to solve the hydraulic 
equations. The WDND solution representation and its operators are in (Bermudez et al. 2021).  

Table 2. Comparison of network pipe layouts 
obtained by HSA and SOTS 

diameter mm # pipes HSA # pipes TS-OS  
63 209 198 
90 8 22 
110 10 22 
125 14 31 
315 40 8 
400 1 3 
450 2 0 
#pipes 284 284 
Cost 347596 365477 
 

 

Figure 2. Solution path followed by the SOTS in terms 
of H 

Following with the result analysis, Table 2 shows the values and details of the best solutions found so far by the 
two proposed methodologies. As can be seen, there is a difference of 5.14% in the total investment cost between 
the two methodologies. In no case is the larger diameter pipe (630 mm) used in the design of the network. 
Figure 2 shows the evolution of the SOTS from a solution with a TIC of 4x 106 order. The lowest value obtained 
corresponds to a TIC = 365477.  A first zone can be identified where the intelligent destructive phase 
predominates and where a steady decrease of the evaluation function is observed. At a certain point, the 
destructive phases start to cross the infeasible zone. Unfeasible solutions are penalised and shown with higher 
values of H. In this zone, the alternation of phases allows oscillation until better TIC values are obtained. If no 
stopping criterion is applied, a zone is reached where the algorithm no longer produces better solutions and 
oscillation alternates between penalised and suboptimal values.  

0 200 400 600 800 1000 1200 1400 1600 1800

# iterations

0

2

4

6

8

10

12

H

10 6

feasible zone

no feasible zone

695



6. Conclusions 

This paper presents two metaheuristic approaches to solving a real WDND problem. On the one hand, we 
implement a TS algorithm enhanced with an ad hoc SO technique consisting of a sequence of two destructive 
phases and one constructive phase to improve the intensification and diversification in the search, resulting in 
a SOTS algorithm. On the other hand, we present a hybrid algorithm based on SA methods, called HSA 
combined with the GRASP, as a local search.  
The performance of these two proposals is analysed by considering the solution quality. SOTS algorithm can 
start the search from solutions with very high total investment costs and reaches good solutions in the search's 
early stages, with relatively low computational effort compared to the HSA. This is mainly due to the implemented 
intelligent destruction phase. However, as the search progresses, the decrease in the total investment costs 
found becomes smaller, the exploratory capacity decreases, and the number of times the evaluation function is 
executed increases. Similar behaviour can be observed in HSA. The tools available for avoiding local minima 
are different for the two methods: short-term memory and long-term memory in the case of SOTS, and the 
acceptance of worse solutions when the temperature is high in the case of HSA. Considering that the space of 
possible solutions for the given problem is of the order of 10256, the possibility of exploring different regions of 
the problem using a single search technique is limited, and efforts to design solvers for the WDND should 
consider cooperative strategies between the two methods. Future work aims to develop hybridized algorithms, 
combining the advantages of SOTS and HSA and avoiding its weaknesses. 
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