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In this work, the possibility to shift from a batch to a continuous production of 16-hexadecanolide, one of the 

main components of the white musk essence, was theoretically studied. The selected synthesis was an 

upgraded version of that proposed by Story in 1968, who obtained macrocyclic compounds from the 

decomposition of ketone peroxides (in this case the involved peroxide was tricyclohexylidene triperoxide). But 

such reaction presents some huge criticalities: 1) high exothermicity and, 2) production of carbon dioxide, which 

are known to both modify the kinetics of the desired reaction and lead to a pressure increase inside the reactor 

whether the gases are not vented. For such reasons, to implement any safe continuous production of this 

chemical compound, two main points must be addressed: 1) determination of the system runaway boundaries 

and 2) identification of the optimal operating conditions to make sustainable the production of 16-

hexadecanolide (that is, the theoretical design of a tubular reactor capable of continuously discharging the 

produced incoercible gases). For what concerns the first point, a sensitivity analysis was carried out to determine 

the safe operating range of the most important operating variables (that is, coolant temperature and reactant 

inlet temperature) possibly taking into account the effect of radial dispersion; for the second point, as carbon 

dioxide is produced over the decomposition and needs to be continuously vented to avoid reactor pressurization, 

a Teflon tube, highly permeable with respect to carbon dioxide, was proposed and its theoretical performances 

was investigated trying to maximize 16-hexadecanolide productivity also maintaining safe operating conditions. 

Results showed the theoretical possibility of developing a continuous production process capable of being also 

commercially sustainable. 

1. Introduction 

16-hexadecanolide is a cyclic macrolactone used in both cosmetic and perfume industry for the synthetic 

production of the white musk fragrance. Originally, white musk aroma was available as a natural derivative, a 

secretion produced by the musk deer. Hence, due to high costs, environmental issues and scarce availability of 

this substance, the chemical industry was forced to develop synthetic productions. In the current literature, 

several studies have been proposed discussing different synthetic paths to obtain 16-hexadecanolide (Shono 

et al., 1986). However, one of the most interesting applications remains the solution presented by Story (Story 

et al., 1968). Story showed the possibility of obtaining macrocyclic lactones and high value hydrocarbons using 

common and easily available compounds such as cyclohexanone and hydrogen peroxide. Through the 

decomposition of the reaction intermediate, that is tricyclohexylidene triperoxide (TCTP), 16-hexadecanolide is 

obtained among various products. Despite both the simplicity and the relatively low costs, the process proposed 

by Story exhibits a series of critical issues. In fact, the decomposition of TCTP is a very fast and highly 

exothermic reaction (around 1861 [kJ/kg of TCTP] (Ferrer et al., 2018)). In addition, carbon dioxide is released 
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as a product of the decomposition. Currently, this process is carried out inside discontinuous reactors (batch 

type), within which, despite the exothermicity of the reaction, it is possible to produce 16-hexadecanolide with a 

selectivity ranging from a minimum of 15 to a maximum of 28% (Ferrer et al., 2018). Moreover, due to the 

presence of gaseous product, a proper continuous venting is also needed. 

In the framework of shifting to the continuous the production of 16-hexadecanolide, some intensification 

attempts on other potentially runaway processes can be traced in the scientific literature (Copelli et al., 2017, 

2022), including also kinetic-free models (Maestri et al., 2020), but, in those cases, the shifts have been done 

passing from batch to series of continuously stirred tank reactors. In this way, a non-negligible residual risk 

remained, due to the start-up of the continuous tank reactors and their criticalities in the maintenance of the 

level control. 

In this work, the batch to continuous shift of 16-hexadecanolide potentially runaway synthesis was theoretically 

investigated. Particularly, basing on the current literature (Copelli et al., 2016), a lab-scale tubular reactor made 

of perfluorinated linear polymers, such as Teflon AF 1600® and Teflon AF 2400® (which exhibit both high gas 

permeability and high melding temperatures) was proposed.The optimization of the most important operating 

and design parameters (that is, coolant temperature and inlet reactant temperature together with tubular reactor 

length) was carried out by identifying the system runaway boundaries through a sensitivity analysis on the 

maximum local temperatures reached along the tubular reactor coordinate (Varma et al., 1999). In order to 

account for diffusive phenomena (thermal and material diffusion in both axial and radial directions), the 

sensitivity study was performed using initially a 1-D tubular reactor model and then, a 2-D one (operating in 

laminar conditions). Different reactant inlet flowrates were tested for all the models to assess their influence on 

the runaway boundaries. Once the runaway boundaries were identified, optimal operating conditions were 

proposed, together with a hypothetical process layout. 

2. Case Study 

The synthesis of 16-hexadecanolide developed by Story is basically made of two steps. The first one includes 

the synthesis of the cyclohexanone peroxides; the second one is about their decomposition. 

The first procedure reported in literature (Story et al., 1970) provides 70% concentrated perchloric acid in 

acetonitrile as catalyst and 90% concentrated hydrogen peroxide, in 2:1 molar ratio to cyclohexanone, at 70 °C. 

The scale-up of this reaction is difficult because of its safety issues. Concentrated H2O2 is highly reactive and 

could lead to uncontrolled oxidations followed by a large generation of heat. A corrosive reaction mixture due to 

the presence of concentrated perchloric acid also increases the risks connected to this reaction. 

The second step of the Story synthesis basically consists of the thermal (or photochemical) decomposition of 

the previously synthetized cyclohexanone peroxides. 

TCTP decomposition leads to the formation of 16-hexadecanolide (15-28%), cyclopentadecane (28-34%) and 

cyclohexanone (Ferrer et al., 2018). Whenever the reaction path leads to the formation of 16-hexadecanolide 

also carbon dioxide is produced.  

 

 

 

+ 2 CO2 

 

 

 

Figure 1: TCTP decomposition and formation of 16-hexadecanolide 

Given the high exothermicity of the overall decomposition, TCTP must be diluted into a suitable solvent capable 

of decreasing the potential adiabatic temperature increase in case of thermal loss of control. According to 

literature, a 4% w/w solution of TCTP in dodecane has been proved to be stable in a wide range of temperatures 

(De Armas, 2015), therefore its physical properties together with the kinetics already proposed will be considered 

for this theoretical study. 

3. Methods and Mathematical Models 

A Plug Flow Reactor (PFR) model, with both presence (2-D model) and absence (1-D model) of radial heat and 

mass dispersions, was developed to identify the runaway boundaries for the system by implementing a suitable 

MATLAB® code solved using the Methods of Lines. 
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Equations for the 1-D model are reported in Eq. (1) and based on the following hypotheses: 1) no radial changes 

in reactant concentration (𝐶𝑖), temperatures (𝑇) and velocities (𝑣); 2) perfect mixing in the radial direction (𝑟) and 

no mixing in the axial direction (𝑧); 3) constant inlet velocity (𝑣0) also equal to the axial one; 4) steady-state 

operation (𝑑/𝑑𝑡 = 0); 5) constant reacting mixture density (𝜌𝑚𝑖𝑥) and specific heat (𝑐𝑝,𝑚𝑖𝑥); 6) presence of an 

external static cooling system at constant temperature (this means, constant reactor wall temperature 𝑇𝑤). 

𝑣0 ∙
𝑑𝐶𝑖

𝑑𝑧
= −𝑟

𝑣0 ∙
𝑑𝑇

𝑑𝑧
= −

∆𝐻

𝜌𝑚𝑖𝑥∙𝑐𝑝,𝑚𝑖𝑥
∙ 𝑟 −

4𝑈

2∙𝑅∙𝜌𝑚𝑖𝑥∙𝑐𝑝,𝑚𝑖𝑥
(𝑇 − 𝑇𝑤)

𝐵𝐶:  𝐶𝑖(𝑧 = 0) = 𝐶𝐼𝑁;      𝑇(𝑧 = 0) = 𝑇𝐼𝑁

   (1) 

where the overall decomposition reaction rate can be expressed as (Ferrer et al., 2018): 

𝑟 = 1.97 ∙ 108 ∙ 𝑒
(−

1.09∙104

𝑇
)
∙ [(1 − 𝑥)0.853 ∙ 𝑥1.405 + 0.228 ∙ (1 − 𝑥)]   [

𝑘𝑚𝑜𝑙

𝑚3𝑠
] 𝑥 = 𝐶𝐼𝑁 −

𝐶𝑖

𝐶𝐼𝑁
  (2) 

On the contrary, equations for the 2-D model are reported in Eq. (3) and based on the following hypotheses: 1) 

radial changes in reactant concentration (𝐶𝑖), temperatures (𝑇) and axial velocity (𝑣𝑧) due to the presence of 

both radial material (𝐷𝑖) and thermal (𝑘𝑚𝑖𝑥) diffusivity; 2) no mixing in the axial direction (𝑧); 3) constant inlet 

velocity (𝑣0); 4) steady-state operation (𝑑/𝑑𝑡 = 0); 5) constant reacting mixture density (𝜌𝑚𝑖𝑥) and specific heat 

(𝑐𝑝,𝑚𝑖𝑥); 6) presence of an external static cooling system at constant temperature (this means, constant reactor 

wall temperature 𝑇𝑤). 

𝑣𝑧 ∙
𝜕𝐶𝑖

𝜕𝑧
=

𝐷𝑖

𝑟
∙
𝜕𝐶𝑖

𝜕𝑟
+ 𝐷𝑖 ∙

𝜕2𝐶𝑖

𝜕𝑟2
− 𝑟

𝑣𝑧 ∙
𝜕𝑇

𝜕𝑧
=

𝑘𝑚𝑖𝑥

𝜌𝑚𝑖𝑥∙𝑐𝑝,𝑚𝑖𝑥
(
1

𝑟
∙
𝜕𝑇

𝜕𝑟
+
𝜕2𝑇

𝜕𝑟2
) −

∆𝐻

𝜌𝑚𝑖𝑥∙𝑐𝑝,𝑚𝑖𝑥
∙ 𝑟

𝐼𝐶 & 𝐵𝐶:  

{
 
 

 
 𝐶𝑖(𝑡 = 0) = 𝐶𝐼𝑁;      𝑇(𝑡 = 0) = 𝑇𝐼𝑁

𝜕𝐶𝑖

𝜕𝑟
|
𝑟=0

= 0;   
𝜕𝑇

𝜕𝑟
|
𝑟=0

= 0 

𝜕𝐶𝑖

𝜕𝑟
|
𝑟=𝑅

= 0;  
𝜕𝑇

𝜕𝑟
|
𝑟=𝑅

= −
4𝑈

2∙𝑅∙𝜌𝑚𝑖𝑥∙𝑐𝑝,𝑚𝑖𝑥
(𝑇 − 𝑇𝑤)   

   (3) 

The laminar axial velocity was calculated as: 

𝑣𝑧 = 2 ∙ 𝑣0 ∙ (1 − (
𝑟

𝑅
)
2
)   (4) 

All parameters involved in the calculations are reported in Table 1.  

Table 1: Values of all constitutive parameters involved in the study 

Parameter Value Parameter Value Parameter Value 

𝑘𝑚𝑖𝑥 0.14 [W/mK] 𝜇𝑚𝑖𝑥 1.34 [cP] 𝜌𝑐𝑜𝑜𝑙 920 kg/m3 

𝑘𝑟 0.25 [W/mK] 𝜇𝑐𝑜𝑜𝑙 1.50 [cP] 𝑐𝑝,𝑐𝑜𝑜𝑙 1370 [J/kg K] 

𝑘𝑒 0.12 [W/mK] 𝜇𝑊 1.00 [cP] 𝜌𝑚𝑖𝑥 750 kg/m3 

𝐷𝑖 1e-8 [m2/s] 𝑣𝑐𝑜𝑜𝑙 0.001 [m/s] 𝑐𝑝,𝑚𝑖𝑥 2207 [J/kg K] 

∆𝐻 6.706e9 [J/kmol]   𝑠 0.1 [mm] 

The overall heat transfer coefficient was calculated, case by case, considering the presence of an external bath 

of static silicon oil at a temperature equal to 𝑇𝑤 (which is variable in the simulations but always considering that 

dodecane boils at 216.3 °C, and this is a limit for the operating temperatures) according to Eq. (5).  

1

𝑈
=

1

ℎ𝑖
+ 𝑠 ∙

𝐴𝑖

𝑘𝑟𝐴𝑙𝑛
+

𝐴𝑖

ℎ𝑒𝐴𝑒
   (5) 

where: 

𝐴𝑖 = 𝜋2𝑅𝐿;    𝐴𝑒 = 𝜋2(𝑅 + 𝑠)𝐿;    𝐴𝑙𝑛 = (𝐴𝑖 − 𝐴𝑒)/ln (𝐴𝑖 − 𝐴𝑒);   ℎ𝑖/𝑒 =
𝑁𝑢𝑖/𝑒∙𝑘𝑖/𝑒

2𝑅(𝑜𝑟 𝑅+𝑠)
   (6) 
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𝑁𝑢𝑖/𝑒 = 3.66 ∙ 0.85 ∙ 𝐺𝑟𝑖/𝑒 ∙

(

𝜇𝑚𝑖𝑥
𝑐𝑜𝑜𝑙
𝜇𝑊

)

0.14

1+0.045∙𝐺𝑟𝑖/𝑒
0.66      𝐺𝑟𝑖/𝑒 = 𝑅𝑒𝑖/𝑒 ∙ 𝑃𝑟𝑖/𝑒 ∙

2𝑅(𝑜𝑟 𝑅+𝑠)

𝐿
      𝑃𝑟𝑖/𝑒 = 𝑐𝑝,(𝑚𝑖𝑥,𝑐𝑜𝑜𝑙) ∙

𝜇𝑚𝑖𝑥/𝑐𝑜𝑜𝑙

𝑘𝑚𝑖𝑥/𝑐𝑜𝑜𝑙
 (7) 

𝑅𝑒𝑖/𝑒 = 𝜌𝑚𝑖𝑥/𝑐𝑜𝑜𝑙 ∙ 𝑣0/𝑐𝑜𝑜𝑙 ∙
2𝑅(𝑜𝑟 𝑅+𝑠)

𝜇𝑚𝑖𝑥/𝑐𝑜𝑜𝑙
   (8) 

It was chosen to simulate a mini-tubular reactor because it is safer than a classical tank due to the smaller 

reactive volumes and the high surface-volume ratio, which gives an optimal exchange with the external jacket. 

As carbon dioxide produced over the decomposition needs to be continuously vented to avoid reactor 

pressurization, a Teflon AF 2400® tube, highly permeable with respect to carbon dioxide, was simulated. The 

tubes commercially available have diameters (2R) of 0.8, 3 and 6 mm and a thickness (s) of 0.1 mm. Inlet 

flowrates (Fmax) used for the simulated were 1, 4 and 10 mL/min because laminar conditions are required by Eq. 

(3). 

4. Results and discussion 

Table 2 reports the calculated values of Reynolds numbers and heat transfer coefficients for all the different 

diameter/flowrate combinations simulated in this work. 

Table 2: Heat transfer values and Reynolds numbers used for the different diameter/flow combinations 

Fmax [mL/min]   D=0.8 mm D=3 mm D=6 mm 

1 

 

Re 

U [W/(m2·K)] 

14.85 

267.43 

3.95 

76.51 

1.98 

38.72 

4 Re 

U [W/(m2·K)] 

14.85 

267.63 

15.83 

76.54 

7.92 

38.82 

10 Re 

U [W/(m2·K)] 

148.46 

267.73 

9.59 

76.60 

9.80 

38.90 

Parametric sensitivity criterion was used to identify the runaway boundaries (RB) of the system as a function of 

both the reactor wall temperature Tw and the inlet reacting mixture temperature Tin. First, we investigated the 

RB with respect to the wall temperatures (considering Tin equal to 25 °C); particularly, temperatures below 200 

°C were selected because of the solvent boiling point. Then, after the identification of the RB with respect to Tw, 

using a value of Tw lower than its detected boundary, the parametric sensitivity with respect to Tin was 

investigated. Table 3 shows all the results obtained for the one-dimensional model (1-D). According to the 

generalized parametric sensitivity criterion, the critical value of a parameter is that one in correspondence of 

which the parametric sensitivity function 𝑆(𝜃∗, Φ), calculated using Eq. (12), exhibits a maximum. 

𝑆(𝜃∗, Φ) =
Φ

𝜃∗
∙
𝜕𝜃∗ ( Φ)

𝜕𝜃∗
 (12) 

where 𝜃∗ is the objective function and Φ is the parameter with respect to 𝑆(𝜃∗, Φ) is calculated.  

Table 3: Values of Tw,cr and Tin,cr obtained for different configurations (1-D) 

 Reactor Diameter 

[mm] 
Fmax=1 mL/min Fmax=4 mL/min Fmax=10 mL/min 

Tw,cr 0.8 

3 

176.15 °C 

129.15 °C 

107.15 °C 

176.15 °C 

129.15 °C 

107.15 °C 

176.15 °C 

129.15 °C 

107.15 °C  6 

Tin,cr 0.8 

3 

222 °C 

167 °C 

145 °C 

221 °C 

168 °C 

145 °C 

222 °C 

168 °C 

145 °C  6 

As the sake of example, Figure 2 and Figure 3 report the sensitivity 𝑆(𝜃∗ = 𝑇𝑚𝑎𝑥 , Φ = 𝑇𝑤)  as a function of Tw 

and Tin, respectively. Figure 2 was calculated using: D=3 mm, Fmax=4 mL/min, Tin=25 °C, and v0=0.0094 m/s; 

while Figure 3 was calculated using: D=3 mm, Fmax=4 mL/min, Tw=115 °C, and v0=0.0094 m/s. 
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Figure 2: Sensitivity with respect to Tw Figure 3: Sensitivity with respect to Tin 

Once RB were calculated, it was decided to use 25 °C (ambient temperature) as inlet temperature and the 

maximum safe Tw for each diameter and flowrate to calculate the reactor lengths necessary to obtain 

conversions equal to 90% and 95%. The results obtained are shown in Table 4. 

Table 4: Reactor lengths for 90-95 % conversions using different configurations (1-D) 

Diameter 

[mm] 

Tw 

[°C] 

Fmax=1 mL/min 

 

Fmax=4 mL/min 

 

Fmax=10 mL/min 

 

  90% 95% 90% 95% 90% 95% 

0.8 160 4.5 5 16.5 18.5 40.5 46 

3 115 6 6.5 22 25 54.5 62.5 

8.5 92 8.5 10 33.5 38.5 84.5 95.5 

As it is possible to see from Table 4, the lower the diameter of the reactor the higher the wall temperature could 

be, also minimizing the reactor length required to obtain commercially sustainable conversions. The minimum 

reactor length was obtained for the combination: Fmax=1 mL/min and D=0.8 mm. Such a set of operating 

conditions corresponded to a contact time within the reactor equal to 140-150 s, which is the same for all reactors 

having an internal diameter of 0.8 mm. The procedure performed for the 1-D model was then repeated using a 

two-dimensional (2-D) model. Table 5 shows the results obtained. 

Table 5: Values of Tw,cr and Tin,cr obtained for different configurations (2-D) 

 Reactor Diameter 

[mm] 
Fmax=1 mL/min Fmax=4 mL/min Fmax=10 mL/min 

Tw,cr 0.8 

3 

158.65 °C 

115.15 °C 

95.15 °C 

159.15 °C 

118.65 °C 

96.65 °C 

158.65 °C 

115.15 °C 

95.65 °C  6 

Tin,cr 0.8 

3 

6 

223.15 °C 

167.15 °C 

141 °C 

223.15 °C 

167.15 °C 

141 °C 

223.15 °C 

167.15 °C 

141 °C 

As observed with the 1-D model sensitivity analysis, increasing the diameter of the reactor implied a shift of the 

RB towards less conservative values. This trend is justified by the values of the overall heat transfer coefficient, 

which were reported in Table 2. Larger diameter values corresponded to lower heat exchange efficiency, due 

to the reduced surface-to-volume ratio. This result suggests the choice of reactors with smaller diameters 

because they can tolerate safely higher wall temperatures. It is worth to notice that all the temperatures 

considered are compatible with the use of silicone oil as heat transfer fluid and Teflon AF 2400® material has 

reactor material. Moreover, concerning the absolute values of the critical wall temperature, it is possible to 

observe that the presence of radial heat and material dispersion leads to more conservative estimation of the 

RB; consequently, optimal and safe operating conditions must be chosen considering the possible presence of 

such dispersions. The trends obtained for the sensitivity analysis with respect to the wall temperature were also 

confirmed for the inlet temperature. It was also confirmed the general trend according to which the 2-D model 

is more conservative with respect to the 1-D model. As previously done for the 1-D model, it was decided to use 

25 °C (ambient temperature) as inlet temperature and the maximum safe Tw for each diameter and flowrate to 

calculate the reactor lengths necessary to obtain conversions equal to 90% and 95%. The results obtained are 

shown in Table 6. 
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Table 6: Reactor lengths for 90-95% conversions using different configurations (2-D) 

Diameter 

[mm] 

Tw 

[°C] 

Fmax=1 mL/min 

 

Fmax=4 mL/min 

 

Fmax=10 mL/min 

 

  90% 95% 90% 95% 90% 95% 

0.8 160 8 9.5 32 38 79 90 

3 115 9 10 35 39 88 97 

8.5 92 10 11 40.5 45 98 112 

The two-dimensional model predicts greater reactor lengths than the 1-D model due to the lower wall 

temperatures necessary to operate outside the runaway region. A modest difference is observed between the 

lengths of the reactors needed to have a conversion of 90% and 95%, forcing to choose a desired final 

conversion of 95 % for guaranteeing less waste of reactant. The reactor lengths varied between 9 m and 112 

m, depending on the flowrates and diameters chosen. So, it is possible to have both very long reactors and a 

shorter multi-tubular reactor. However, all predicted lengths can be used industrially because they can 

guarantee the production of 2 to 20 kg of pure 16-hexadecanolide (4% w/w TCTP in dodecane and 16% of 

maximum selectivity were considered), using from 1 mL/min to 10 mL/min of reacting mixture flowrate.  

5. Conclusions 

In this work a configuration for the continuous production of 16-hexadecanolide has been proposed. Specifically, 

Story's synthesis was chosen, based on the decomposition of tricyclohexilidene triperoxide. A tubular reactor 

composed of Teflon AF 2400® was chosen. As the reaction produces carbon dioxide, this material was chosen 

as it is permeable to gas, allowing CO2 to be vented. Safe and optimal operating conditions were determined 

using the generalized parametric sensitivity criterion applied to the maximum reactor temperature with respect 

to the main process variables (wall and inlet temperature). Sensitivity analysis showed that safe optimum wall 

temperatures ranged between 95 °C and 160 °C, depending on the model (1-D, considering axial dispersion, or 

2-D, to consider radial dispersion too) and the diameter of reactor chosen.  

Results highlighted how, using a 2-D model, the runaway boundaries shifted significantly towards more 

conservative values of the operating temperatures, highlighting the limitations of simple 1-D tubular reactor 

models without radial dispersions. Knowing the critical temperatures from the 2-D model, it was possible to 

select the best reactor layout given a desired productivity. Particularly, a reactor diameter of 0.8 mm could be 

selected to have the sufficient contact time experimentally observed to reach the full TCTP conversion. Selecting 

an inline flowrate of 10 mL/min (corresponding to an overall annual productivity of 20 kg of 16-hexadecanolide), 

a coolant temperature of 158 °C should not be exceed. In correspondence of these process parameters and 

operating conditions, the length of the reactor resulted to be around 90 m. 
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