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Plant factories with artificial lighting (PFALs) are heralded as a potential solution to enhance the resilience of 

the food production system by amplifying productivity per unit area of land. However, PFALs typically demand 

higher resource consumption than traditional greenhouses or open-field farming. To optimize resource use in 

PFALs, we developed a nonlinear, automatic control system utilizing deep reinforcement learning (DRL). The 

proposed system implicitly learns the intricate dynamics of crop behavior and environmental variables, aiming 

to curtail resource, particularly energy consumption in PFALs, while ensuring that these environmental variables 

stay within desired operating parameters. We demonstrate the efficacy of the proposed DRL-based automatic 

control system through a case study: a shipping container PFAL situated in Ithaca, New York. We evaluate the 

ability of the proposed DRL system to reduce energy consumption by comparing its energy consumption to that 

of the conventional control method. Our findings indicate that, in typical Ithaca summer and winter conditions, 

the DRL-based control system can potentially decrease energy consumption by about 31 % and 23 % compared 

to the conventional control method. 

1. Introduction 

The rapidly growing human population, dwindling resources, and shifts in climate patterns are increasingly 

straining the food production system (Vogel et al., 2019). To strengthen the resilience of the current food system, 

innovative methods that produce more food with fewer resources are needed (Pennisi et al., 2019). One 

promising approach is Controlled Environment Agriculture (CEA), which includes plant factories and 

greenhouses, known to enhance sustainable resilience in food production (Benke and Tomkins, 2017). Plant 

factories with artificial lighting (PFALs) are noteworthy as they could dissociate stable crop production from 

geographical climate constraints while maintaining high crop quality and efficiency (Beacham et al., 2019). 

Unlike traditional greenhouses, PFALs can be entirely isolated from the external environment, necessitating 

precise control over lighting and ventilation for optimal crop growth and resource conservation (Kozai, 2018). 

Operational costs, especially those related to energy use, present a significant barrier to PFAL adoption. For 

instance, artificial lighting in PFALs comprises about 80 % of total electricity consumption (Kozai et al., 2019). 

The development of PFAL automation systems that ensure both the PFAL’s optimal operation and efficient 

resource use is of paramount importance. 

Although extensive studies on optimal control techniques for greenhouses exist (Hu and You, 2022), their 

application to PFALs remains underexplored. Early efforts to integrate optimal control techniques into PFAL 

operations can be traced back to Morimoto et al. (1995). Their study utilized a data-driven autoregressive moving 

average (ARMA) model of plant physiological processes within a PFAL, leading to the development of a linear 

quadratic regulator (LQR) for its optimal operation. However, they overlooked uncertainties arising from the 

linear ARMA model and the effects of external disturbances. Deng et al. (2018) later addressed disturbance 

issues by developing a robust linear optimal control method for PFALs, but they only considered disturbances 

from bacteria and aphids and omitted modeling uncertainties. Due to the limited applicability of linear control 

methods, Xu et al. (2021) developed a nonlinear optimal control method to investigate energy consumption 

reduction and lettuce yield in a lettuce PFAL. The application of these optimal control techniques largely depends 
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on the availability of mathematical models (Hu et al., 2023). However, due to the challenges of developing 

accurate mathematical models of biological systems, alternatives such as deep reinforcement learning (DRL) 

have been proposed (Ajagekar et al., 2023a). DRL methods have shown significant performance in building 

climate control (Xie et al., 2023). Given the limitations of conventional control methods and the advancements 

in DRL techniques, there is a pressing need to investigate automated DRL-based control methods for PFALs 

(van Delden et al., 2021). This led Zheng et al. (2021) to develop a deep deterministic policy gradient (DDPG)-

based DRL for PFAL automatic control. Their focus, however, remained limited to day-to-day agricultural 

management activities, overlooking the climate's hour-by-hour impact on crops. They did not account for energy 

consumption in the reward function and the presence of uncertainties in the control system. Consequently, there 

is an immediate need to develop better-automated control methods based on DRL, which not only regulate the 

environmental factors of PFALs but also curtail resource consumption. 

In this work, we present a nonlinear automatic control framework based on DRL for regulating the environmental 

variables and streamlining resource use in a PFAL. The DRL-based automatic control framework uses only the 

plant weight information and environmental factors like indoor air temperature, humidity, and CO2 concentration 

to streamline the PFAL operations. We use lettuce cultivation in a shipping container located in Ithaca, New 

York, as a case study to demonstrate how the DRL-based control framework can be employed to efficiently 

manage the growth environment in PFALs, optimizing resource use. 

2. Deep reinforcement learning framework 

In DRL, the agent (in this context controller) refines its decision-making capabilities through continuous 

interaction with an environment, utilizing a balance of exploration and exploitation (Sutton and Barto, 2018). The 

environment in this context is characterized as a Markov Decision Process, defined by the following parameters: 

• a state space S  

• an action space A 

• a transition function T: S × A → S 

• a reward function R: S × A → R 

• a discount factor γ which takes a value between 0 and 1. 

In this study, the state and action spaces of the PFAL are depicted in Tables 1 and 2. It is important to note that 

the only crop-specific information given to the DRL agent pertains to the crop's dry weight. The feasibility of this 

approach is largely due to recent advancements in estimating crop fresh weight using artificial intelligence 

techniques (Reyes-Yanes, 2020). We also introduce a photoperiod indicator variable, which assumes a value 

of 0 during the dark period and 1 during the light period, signaling whether the artificial light is off or on. 

Considering the varying temperature needs of the crops during light and dark periods, providing data on the 

optimal indoor temperature range helps the DRL controller adapt to these changes. Likewise, the DRL controller 

is given outdoor temperature and humidity values, enabling it to identify when the outdoor conditions are suitable 

for conserving energy (Ajagekar et al., 2023b). This practice of exchanging indoor air with outdoor air to regulate 

the PFAL environmental variables to save energy, known as a heating, ventilation, and air conditioning (HVAC) 

economizer, is widely recognized (Eaton et al., 2023). 

Table 1: State-space for the DRL framework 

Variable  Description Units 

w Crop dry weight kg/m2 

c Indoor CO2 concentration kg/m3 

T Indoor temperature °C 

h Indoor humidity kg/m3 

Tlb Desired indoor lower bound temperature °C 

Tub Desired indoor upper bound temperature °C 

iphoto Photoperiod indicator - 

To Outdoor temperature °C 

ho Outdoor humidity kg/m3 

tday Time of day s 

The control actions presented in Table 2 symbolize the operational actuators within the PFAL, which are 

adjusted to manage environmental variables such as lighting, temperature, humidity, and CO2 levels within the 

PFAL. For instance, a dehumidifier is utilized to extract excess humidity generated by the crops through 

transpiration (Chen et al., 2021). Similarly, the artificial lighting system provides light energy, which is necessary 

for plant photosynthesis. 
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Table 2: Action space for the DRL framework 

Variable  Description Units 

UL Power to the artificial lighting system W/m2 

Uc Supplemental CO2 supply rate kg/m2s 

Uq Cooling or heating rate W/m2 

Uh Dehumidification rate kg/m2s 

Uv Ventilation rate m3/m2s 

The PFAL state variables are described by a system of ordinary differential equations (ODEs). The variables 

are the crop dry weight, indoor CO2 concentration, indoor air temperature, and indoor relative humidity. The 

crop dry weight is described by the two-state crop model developed by Van Henten (1994) and is given in Eqs. 

(1) and (2). 
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where wns (kg/m2) and ws (kg/m2) denote the non-structural and structural dry weights, ɸphoto (kg/m2s) denotes 

the canopy rate of photosynthesis, rgr (1/s) is the specific growth rate, ɸresp (kg/m2s) is the maintenance 

respiration rate, t (s) is the time, and cα and cβ are crop growth parameters (Chen et al., 2022a). The total crop 

dry weight w (kg/m2) is obtained from the structural and non-structural dry weight using the following relation:  

w = ws + wns. The state space of the DRL framework is an extension of the three environmental variables and 

the crop’s total dry weight. Additional information (as detailed in Table 1), which is crucial for enhancing 

computational efficiency during the training phase, is incorporated into the state space. Notably, the DRL 

controller operates without information on crop photosynthesis, transpiration, and respiration rates, as these are 

challenging to measure accurately. The anticipation is that the DRL controller will implicitly acquire this 

knowledge to make optimal sequential decisions. During the DRL training phase, the agent receives the 

observed state (st) and reward (rt) at each time-step (t) from the environment and, in turn, chooses an action 

(at), which is applied to the environment. The goal is to obtain an optimal action for the current state that 

maximizes the cumulative reward. The reward function employed in this study is outlined in Eq.(3). 
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where pi denotes the price of the i-th control activity within the PFAL, nu is the number of inputs, and Δw/Δt is 

the crop growth rate. The costs for electricity and CO2 are 0.2051 US $/kWh and 0.2 US $/kg (Chen et al., 

2022b). In this work, we used the soft actor-critic (SAC) DRL method (Haarnoja et al., 2018) to obtain the optimal 

policy.  

3. Case study 

In this study, we present a case study to demonstrate the effectiveness of the DRL control framework to improve 

the energy use efficiency of the PFAL compared to the conventional control method. We begin this section by 

first describing the simulation settings. Thereafter, we present the results of the trajectories of the PFAL system 

under the control of the DRL control system. Finally, we compare the energy use of the PFAL under the control 

of the DRL and the conventional control methods for typical summer and winter conditions in Ithaca, New York. 

This study employs a PFAL housed within an airtight 40-foot shipping container with dimensions (12.2 m x 2.5 

m x 3.0 m) and located in Ithaca, New York. The PFAL relies entirely on electricity to fulfill its energy needs, 

including heating and cooling. We consider lettuce cultivation as a case study to exemplify the potential of DRL 

in efficiently managing the PFAL's growing environment while minimizing resource use. In this study, we use 

typical summer and winter conditions in Ithaca, New York, to demonstrate the effectiveness of the DRL-based 

automatic control system. 

The sampling time Δt is chosen as 10 min. This means that the environmental factors in the PFAL are regulated 

every 10 min. The growing period was taken as 28 days. The photoperiod was selected as 16 h per day. The 

desired temperature is fixed at 22 – 25 °C during the light period and 18 – 20 °C during the dark period (Ahmed 

et al., 2020). The relative humidity and CO2 levels within the PFAL are supposed to be in the range of 70 – 80 % 

and 800 – 1,200 ppm during the light period. The values of the state and the action variables were scaled to 

81



values between 0 and 1 using the upper bounds on the variables. To compare the performance of the DRL 

control system, we implemented a control system that is made up of on/off control for the lighting systems and 

proportional control for the environmental variables. This control setup represents the current control technology 

used in PFALs. The DRL framework was implemented in Python programming language using the Tianshou 

package (Weng et al., 2022). The training of the DRL agent was conducted on an Intel® Core™ i9-10920X CPU 

with 3.50 GHz 24-Core processor and 250 GB of random-access memory (RAM), and 2 x NVIDIA GeForce 

RTX 3080 10 GB video RAM. The neural network for the DRL policy is made up of 2 hidden layers with 256 

units per layer and regularized linear units (ReLu) as the activation function. 

Figures 1 and 2 show the profiles of the PFAL under the DRL control strategy for typical summer and winter 

months. Considering that the DRL control objective is to minimize energy consumption while maximizing the 

crop growth rate, both trajectories lead to higher final crop dry weight, albeit a slightly lower value in the winter 

case. Ensuring constraint satisfaction is a key challenge in DRL. It can be seen in both figures that the DRL 

control strategy was able to ensure that the constraints were respected. Although, in some instances during the 

dark period in the summer case, the upper bound of the CO2 concentration was violated. In the case of the 

temperature, however, the constraints were always satisfied due to the prioritization of this variable and its 

importance in crop growth. 

It can be seen from both figures that the same supplemental lighting strategy is employed. There is a gradual 

increase in light intensity as the crop matures to ensure effective utilization. Similarly, a strategy of low ventilation 

during the light period and high ventilation during the dark period is used by the DRL control strategy to reduce 

CO2 wastage. This strategy is used because, during the light period, elevated CO2 levels are desired in the 

PFAL to accelerate crop growth. It can also be seen that the DRL control system does more heating during the 

winter case and more cooling during the summer case, which is consistent with the outdoor weather conditions. 

This phenomenon happens because of the consideration of ventilation in the PFAL, which breaks the 

independence of the PFAL from the outdoor conditions. 

 

Figure 1: Profiles of the environmental variables (a – d) and the control actions (e – i) of the PFAL under the 

DRL control strategy for a typical summer month in Ithaca. The solid lines are the profiles of the states and the 

actions, while the dashed lines are the desired operating bounds 

To quantify the ability of the DRL control strategy to streamline energy use in PFALs, we compared its 

performance to that of the conventional control strategy. As mentioned earlier, the conventional control strategy 

is made of up on/off control for the artificial lighting system and proportional control for the CO2 supply, 

ventilation, dehumidification, and heating/cooling systems. The comparison of the energy use of the two 

strategies is presented in Table 3. For the two conditions, the conventional control strategy uses more energy 

per kilogram of crop produced compared to that of the DRL. This could primarily be due to the non-optimality of 
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the conventional control strategy, which leads to excessive resource wastage (Liang et al., 2018). By 

streamlining operations in the PFAL, the DRL control system can reduce energy consumption resulting in 31 % 

and 23 % savings in the summer and winter cases. A possible reason for the low percentage of energy savings 

in the winter case could be due to the colder outdoor conditions, which required reheating of the indoor air mixed 

with the outdoor air because of ventilation. 

 

Figure 2: Profiles of the environmental variables (a – d) and the control actions (e – i) of the PFAL under the 

DRL control strategy for a typical winter month in Ithaca. The solid lines are the profiles of the states and the 

actions, while the dashed lines are the desired operating bounds 

Table 3: Energy use per kilogram of fresh weight for the two control strategies 

Control strategy  Conventional DRL  % savings 

Summer (kWh/kg) 9.08 6.27 30.9 

Winter (kWh/kg) 9.93 7.68 22.7 

4. Conclusions 

In this work, we have presented a DRL control framework for energy utilization in PFALs. The framework 

minimizes the cost of the control activities and maximizes the crop growth in the PFAL while ensuring that the 

environmental variables remain within the desired operating bounds. We demonstrated the efficiency and 

performance of the DRL control system using a shipping container PFAL. The DRL system employs a gradual 

increase in artificial light intensity, and a low light period ventilation, high dark period ventilation strategy to 

streamline energy and CO2 utilization in the PFAL. A comparison with the conventional control strategy typically 

employed in PFAL and made up of on/off control and proportional control shows that the DRL control strategy 

can save 31 % and 23 % of energy in the summer and winter cases. 
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