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This study introduces a novel cyber-physical-biological system for energy management and crop production in 

plant factories. The goal is to minimize energy consumption while maintaining operational efficiency in 

sustainable food production. The CPBS integrates various control variables, including temperature, humidity, 

lighting, and CO2 levels, and accurately captures plant biological dynamics while predicting crop growth within 

controlled environments. To achieve this, physics-informed deep learning techniques are utilized to develop 

computationally efficient digital twins of the plant factory's internal microclimate and crop states. By incorporating 

Artificial Intelligence (AI), the control objectives are fine-tuned to minimize energy usage and resource expenses, 

ensuring sustainable crop production rates under different daytime scenarios. The results demonstrate an 

impressive 8.75 % reduction in energy usage compared to alternative control methods, enhancing operational 

efficiency and promoting sustainability in plant factories. The proposed approach offers a promising solution for 

achieving sustainable food production with minimized energy consumption in controlled environments. 

1. Introduction 

Over recent decades, advancements in food production technology have made remarkable progress in 

addressing the challenges posed by population growth (Engler and Krarti, 2021). One such advanced plant 

cultivation technology is the plant factory, which promises to ensure sustainable food production by creating 

optimal growing conditions for crops while requiring less cultivation area (Sannan et al., 2023). Plant factories 

are controlled environment agriculture (CEA) facilities that provide the ideal growing conditions for the crops. To 

further enhance crop production, advanced control technologies have been developed and incorporated into 

the plant factory (Shamshiri et al., 2018). However, the high initial capital investment in the control system for 

the plant factory poses a challenge to consistent operation. Such high maintenance cost restricts the prevalence 

of plant factory application in many areas (Kozai, 2013). Due to the requirement of a high density of sensors per 

unit area, the producers need to allocate many resources for monitoring every aspect of the crop states (Liang 

et al. 2018). High-fidelity and computationally efficient digital twins of plant factories could help to substantially 

reduce the budget needs for the sensor installation and improve the control decision for the automatic system. 

Several plant factory digital twins have been developed to describe the dynamics of these factories. The 

classification and regression trees algorithm was used to construct a model for predicting temperature 

parameters within the plant factory (Zhang et al., 2021). Conversely, digital twins for crop growth have also been 

developed to consider the crop's responses and impact on the dynamics of the CEA facility rather than focusing 

solely on the microclimate within the facility (de Koning, 1994). A study suggested that 80 % of energy 

consumption could potentially be reduced if energy and resources are allocated judiciously within the CEA 

facility (Cuce et al., 2016). Therefore, integrated digital twins of plant factories should be proposed. In today's 

era of explosive data growth and diverse data types, artificial intelligence (AI) has been developed and employed 

to refine modeling approaches by improving accuracy and computational capability (Li et al., 2023). However, 

traditional AI methods, leveraging black-box methods (Ajagekar et al., 2023), fall short of predicting the nonlinear 

dynamics within the CEA facility due to limited data accessibility in the early stages of crop cultivation (Zaks and 

Kucharik, 2011). To tackle this challenge, physics-informed deep learning (PIDL) approaches can mitigate this 

problem by requiring significantly less data. 
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Equally important to high-fidelity digital twins is the optimization of energy management in plant factories (Liu et 

al., 2023). The primary emphasis for energy management in plant factories is on lighting control, which accounts 

for 60 % of the factory's energy consumption (Xu et al., 2021). However, not only the lighting, temperature, 

humidity, and CO2 control are also essential for maintaining the ideal growing environment for the crop. Rather 

than focusing solely on one aspect of control efforts, all potential actuators are considered in the plant factory, 

moving towards a comprehensive cyber-physical-biological system (CPBS) (Hu and You, 2022). There are 

various optimal control algorithms developed, including proportional-integrated-derivative (PID) control (Kiam 

Heong et al., 2005), lead-lag control, etc. However, the aforementioned control algorithms can exclusively be 

adopted for a single-input-single-output (SISO) system, and a plant factory is a multiple-input-multiple-output 

(MIMO) system, which considers multiple control inputs, such as temperature, humidity, CO2, lighting control, 

and multiple output states. Hence, the design of multiple PID controllers and their coordinated functioning should 

be approached with caution, as the failure of a single PID controller has the potential to jeopardize the 

functionality of the entire decision-making system. Consequently, model predictive control (MPC) is leveraged 

in this control framework. MPC is a model-based control strategy that determines the optimal control sequence 

by solving a sequence of numerical optimization problems with constraints over a specific horizon based on the 

prediction model. The first input in the optimal sequence is sent into the system, and the entire computation is 

repetitively performed at subsequent control intervals following a receding horizon approach. MPC stands out 

as a more suitable approach for optimal control in plant factories due to its MIMO system (Chen et al., 2023) 

compared to alternative control algorithms. However, the effectiveness of MPC is contingent upon the 

uncertainties of prediction (Hu and You, 2023). Significant errors in the forecasting model can skew the control 

results away from the desired constraints. For instance, if there is a large forecast error, the optimal control 

decisions informed by predictive data might allocate inadequate heating/cooling energy required to uphold ideal 

growth conditions, resulting in diminished crop yield and quality. To augment resilience to these forecast 

uncertainties, robust MPC (RMPC) has been introduced, considering uncertain disturbances (Chen and You, 

2022). RMPC provides a buffer against forecast uncertainties, but it could potentially yield overly cautious 

outcomes: excessive leeway might be given to avoid violating constraints. This issue could necessitate 

additional control efforts (Shang et al., 2019). Therefore, a data-driven RMPC should be proposed to both 

effectively hedge against the effects of uncertainty while lowering power consumption. 

This study introduces an AI-enabled comprehensive and robust control system to optimize energy consumption 

and crop yield in plant factories. To create a comprehensive control system, Deep learning is employed to 

estimate a nonlinear dynamic model, considering various energy inputs such as heating, cooling, humidification, 

dehumidification, ventilation, CO2 enrichment, and lighting. A versatile approach is designed to calculate 

separate state-space models (SSM) at each control interval. These individual models were approximated using 

data from our neural network, capturing diverse conditions during different intervals. Within each interval, a 

linear representation of the system's states is obtained, ensuring accurate linearization over the nonlinear model. 

This greatly enhanced the overall robustness and responsiveness of the control system. These specifically 

computed SSMs served as the basis for decision-making within the MPC framework. For each control interval, 

the optimal control strategy was determined based on its corresponding SSM, enabling more tailored and 

adaptive control actions considering the plant factory's microclimate, crop states, and control actuators. 

2. Integrating physics and deep learning to the dynamic model for plant factory optimization  

Both photosynthesis and respiration processes are considered in this crop model to monitor better the 

carbohydrate contained within the plants, as these two biological processes are deemed as two of the key 

factors in describing the plant crops. As one of the bases of plant growth, the photosynthesis process can 

capture energy from sunlight and convert it into biochemical energy stored within the plant (Evans, 2013). In 

this study, the process of photosynthesis is modeled. The net photosynthesis rate described in (Farquhar and 

von Caemmerer, 1982) can be formulated as: 

 (1) 

where Mcarb is the molar mass of CH2O and hair,buf is the inhibition of the photosynthesis rate by saturation of the 

leaves with carbohydrates, P is the gross canopy photosynthesis rate, and R is the photorespiration during the 

photosynthesis process. The inhibition coefficient hair,buf is introduced to describe the scenario when 

carbohydrate within the buffer reaches the plant’s maximum storage capacity, and P is the gross canopy 

photosynthesis rate. R is the photorespiration rate described in (Farquhar and von Caemmerer, 1982). 

Respiration of the plant can release the biochemical energy stored within the plant to support growth, 

reproduction, and other life processes, and is formulated as follows (Heuvelink, 1996): 

( ), , ,c i buf carb air bufM M h P R= −
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 (2) 

where cOrg is the maintenance respiration coefficient of the plant organ, Qm is the value for temperature effect 

on maintenance respiration, COrg is the carbohydrate weight of the plant organ, RGR is the net relative growth 

rate, and cRGR is the regression coefficient for maintenance respiration. The effects of artificial controls, including 

the control of temperature, humidity, and lighting, should be studied to enhance the model's accuracy. 

The temperature control of indoor climate is one of the key factors for sustaining the crops’ lives. The heating 

model is constructed based on the radiation, convection, and conduction between the nutrition solution, plants, 

and lighting. The internal air temperature is assumed to be uniform within the cultivation facilities (Vanthoor, 

2011). The heating model can be constructed based on the heating transfer equations listed below: 

 (3) 

 
(4) 

where V is the volume of the container, ρ is the air density, ci is the heat capacity of internal air, cv is the heat 

capacity of plants, Av is the plant cultivation area, and μ is the surface density. After the construction of the 

revised heating model, the water vapor density and CO2 concentration can be calculated below, 

 (5) 

where  Σq̇P is the sum of the energy transfer rate due to the phase change of the water vapor within the 

cultivation facility, ṁhum, ṁdehum, ṁvent are water vapor mass flow rate by humidifier, dehumidifier, and ventilation.  

Finally, the growth rate with respect to the time of the fruit, leaf, and stem can be found as follow: 

 
(6) 

 

(7) 

 

(8) 

where Rfruit is the relative growth rate of the fruit, Rleaf is the relative growth rate of the leaf, and Rstem is the 

relative growth rate of the stem. By formulating these equations, the growth conditions of crops and cultivation 

environments are numerically and mutually connected. Due to the stiffness of the differential equation for plant 

factory dynamics, regular integration methods may either fail to accurately predict the states or require 

tremendous computational power when the step size or the grid size is not properly settled (Nasiri and 

Dargazany, 2022). PIDL is deemed as one powerful neural network architecture for modeling the cultivation 

facility’s nonlinear dynamics with a small error (Luan et al., 2011). The training dataset is created using the 

physical differential equations described above. Subsequently, this dataset is utilized to train the PIDL. The 

training set of integrated function ẋ̇̂ (u,t) and differential function ẋ̇̂ (u,t), which both have a sample size of N are 

initialized for unifying the scale between different states as follows: 

 (9) 

 

(10) 

where σf and σd are the standard deviation values of the integrated function training datasets and of the 

differential function training datasets. Afterward, in order to construct the PIDL for integrating the stiff ODE, the 

neural network x̃(u,t,a) with the trainable parameters α to integrate the ODE ẋ(u,t), (Xiao et al., 2023). 

Specifically, this neural network is trained within the training dataset. The loss function is defined as (Chen et 

al., 2023): 

 (11) 

where Γf is the supervised loss term defined as: 
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 (12) 

and Γd is the unsupervised loss term defined as: 

 (13) 

and wf is the weight for the integrated function loss, and wd is the weight for the differential function loss. The 

differential function loss is then compared with the differential equations of the plant factory's dynamics proposed 

earlier. Finally, the predicted values are converted back to the state as follows: 

 (14) 

After the PIDL model construction for describing the dynamics within the plant factory, the smart control system 

needs to be designed to both maximize the power usage efficiency and sustain crop production. 

3. Case study for lettuce production in the plant factory under different daytime length 

Leafy greens continue to be highly significant crops in the fresh produce market, raising the need for 

advancements in cultivation technology (Uyttendaele et al., 2016). Among leafy greens, lettuce stands out as a 

widely cultivated crop in various controlled environment facilities, particularly in plant factories (Shimizu et al., 

2011). In response to the demand for improved control systems in plant factories, simulations are conducted to 

investigate lettuce growth under different durations of daytime scenarios. The purpose of this controlled case 

study is to regulate the climate within a plant factory, with the primary objectives being energy conservation and 

maximizing production yield. To achieve these goals, specific constraints have been established as follows: 

During the daytime, the temperature must not exceed 29 °C, and the lower limit is set at 24 °C. The upper limit 

for relative humidity during this period is 90 %, while the lower limit is 80 % (Ramírez-Arias et al., 2012). For the 

dark time, the temperature should not exceed 24 °C, and the lower limit is set at 16 °C. The relative humidity 

range during this time is defined as 65 % to 75 % (Hamidane et al., 2023). The initial conditions for the study 

are based on the values: (a) The starting temperature condition for all values is set at 25 °C; (b) The initial 

relative humidity is settled at 70 %; (c) The initial CO2 concentration is set to 1,000 ppm. 

 

Figure 1: The crop growth under different scenarios. (a) Different control systems crop growth curves under 

different daytime lengths (6 h, 8 h, 10 h, 12 h, 14 h, 16 h). (b) The crop growth curves of different control systems 

under the daytime length of 12 h. (c) The cost-to-yield ratio comparison between different control systems 

Table 1: The statistical summary of the control systems’ performances 

 CEMPC RMPC DRMPC 

Temperature violation (%) 85.41 1.32 2.32 

Humidity violation (%) 87.52 1.41 2.67 

CO2 concentration violation (%) 88.42 1.08 2.78 

Power consumption ($/m2) 15.61 18.52 16.33 

Water consumption ($/m2) 4.1 5.3 4.5 

Resource consumption ($/m2) 6.2 7.8 6.9 
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In this study, a consistent approach is adopted for all MPC frameworks. The prediction horizon is set to 

encompass six-time steps, and the sampling interval is defined as 15 min. To solve the optimization problems 

associated with these frameworks, CVXPY is used as the optimization library and utilizes the GUROBI solver. 

The simulation process is executed on a laptop equipped with an Intel Core i7-11800 H processor operating at 

a frequency of 2.3 GHz, alongside 16 GB. of RAM. The plant factory undergoes evaluation using three different 

control strategies: certainty equivalent MPC (CEMPC), robust MPC (RMPC), and data-driven Robust MPC 

(DRMPC), all aimed at indoor climate control and energy optimization. The control duration spans 30 days, 

approximately equivalent to the entire crop cycle of lettuce. Regarding the impact of different daytime lengths 

on lettuce growth suggested in Figure 1, the observed significant production increments when extending the 

daytime length from 6 to 8 h, 8 to 10 h, and 10 to 12 h indicate the importance of providing adequate light 

exposure to the crops. This finding aligns with previous research emphasizing the role of light in photosynthesis 

and crop productivity. However, beyond the 12 h mark, the production increments become less prominent, 

suggesting diminishing returns in terms of yield improvement. This information can be valuable for growers who 

aim to optimize their lighting strategies and strike a balance between crop productivity and energy consumption. 

Table 1 offers a statistical summary of the controllers' performances, providing quantitative metrics to evaluate 

their effectiveness. Metrics such as production yield, energy consumption, and resource usage can be valuable 

indicators of control system performance. These statistics enable a comprehensive comparison of the different 

strategies, aiding decision-making processes for plant factory optimization. It is worth noting that although 

RMPC achieves a higher production rate compared to the other strategies, the cost-yield ratio displayed in 

Figure 3c demonstrates that the proposed DRMPC framework emerges as the most profitable option. This 

finding highlights the significance of incorporating data-driven approaches and considering uncertainties in the 

control system. By leveraging real-time data and optimizing control objectives based on machine learning 

techniques, the DRMPC framework maximizes production yield while simultaneously reducing energy and 

resource requirements. Conversely, CEMPC, despite its lower energy and resource demands, falls short in crop 

production compared to RMPC and DRMPC due to its failure to account for model uncertainties. The larger 

violations of temperature, humidity, and CO2 constraints observed in CEMPC indicate the adverse effects of not 

considering uncertainties in the control system.  

4. Conclusions 

This study presented a novel cyber-physical-biological framework tailored for plant factories, addressing the 

challenges of accurately modeling biological dynamics, optimizing control decisions, and predicting crop growth 

under varying daylight conditions. Our approach combines PIDL with efficient computational models to achieve 

these objectives. By leveraging this approach, high-fidelity models were developed that capture the intricate 

relationships between environmental factors and crop growth, enabling accurate simulation and analysis. Our 

models are computationally efficient through adaptive linearization feedback, facilitating real-time decision-

making and control adjustments. A key aspect is the optimization of control parameters such as temperature, 

humidity, lighting, and CO2 levels using artificial intelligence. This AI-driven approach strikes a balance between 

energy usage, resource expenses, and sustainable crop production rates. To demonstrate the optimal 

performance of our control framework, extensive simulations compare our AI model with traditional methods 

(CEMPC and RMPC with box-shaped uncertainty set), showcasing a 10.25 % reduction in simulation time and 

improved responsiveness to dynamic conditions. Notably, our control framework achieves an 8.75 % reduction 

in energy usage compared to conventional approaches. By dynamically adjusting environmental conditions 

based on real-time data and AI-optimized objectives, efficient resource utilization is achieved while maintaining 

crop production rates. Our framework offers significant economic and environmental benefits for plant factories. 

Regarding future work, our intention is to expand this method by conducting real-world experiments in order to 

gather additional data. This will not only enhance the accuracy of the model but also enable us to ascertain the 

optimal number of samples required for training. 
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