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Communities are one of the essential elements of modern cities, significantly contributing to overall energy 

consumption and carbon emissions. To further support ongoing decarbonization initiatives, this study presents 

a novel Physically Consistent Deep Learning (PCDL)-based Model Predictive Control (MPC) approach for 

community energy management. This approach incorporates both building-to-grid interactions and on-site 

renewable energy resources. The PCDL model, starting with the definition of physics consistency, is constructed 

in line with the established physical laws that govern community thermal dynamics. Serving as a precise thermal 

load and indoor climate estimator, the PCDL model is then implemented in a centralized MPC to reduce the 

community energy cost and maintain comfortable indoor environments for buildings in the community. To verify 

the effectiveness and control performance of the proposed framework, we use a simulation case study of a 

student residential hall at Cornell University. The results demonstrate that the PCDL-based MPC is highly 

effective in maintaining comfortable indoor conditions and contributes to load shifting and shaving through its 

participation in the demand response service. 

1. Introduction 

Buildings, as an integral part of modern society, not only provide comfortable habitats for humans but also 

account for significant energy consumption. In the U.S., buildings account for 76 % of electricity use, 39 % of 

primary energy use, and 35 % of energy-related carbon emissions (U.S. Energy Information Administration, 

2023). As a result, enhancing building energy efficiency and minimizing carbon emissions is vital to promoting 

societal sustainability. A promising pathway toward building decarbonization is through the adoption of 

distributed electricity sources (DERs) (Roberts et al., 2019). DERs encompass various energy supplies such as 

renewable energy sources, storage systems, electric vehicles, and other on-site electricity providers to the 

buildings. The smart community concept considers a combination of separate buildings (same type or different 

type). Smart communities have the potential to generate community-level optimum solutions that lead to deeper 

connections with microgrids and DERs, resulting in more significant reductions in buildings’ carbon emissions 

and energy consumption (Liu et al., 2022). 

However, these advancements introduce challenges to Building Energy Management (BEM) systems due to 

the associated complexity and uncertainty (Chen et al., 2022a). The boomed development of modern 

communities also reinforces the building-to-grid (B2G) service, which can greatly contribute to enhancing grid 

stability (Trigkas et al., 2022). In B2G applications, the building or community systems receive regulation 

information from the grid market and then alter their operation strategy to reduce or increase their grid power 

consumption, which is also called demand response (DR) (Nikzad and Mozafari, 2014). Compared to single 

buildings, communities manage to integrate more buildings and other facilities, such as district heating pumps, 

on-site renewable energy resources, and electric vehicles, attaining more flexibility in DR service (Salehi et al., 

2022). A common DR method is to implement the grid market price, which is calculated based on predicted total 

energy supply and energy consumption (Nweye et al., 2023). However, a severe issue in the current literature 

is the lack of reliable load and indoor climate estimation methods, which could impair the DR service quality and 

lead to uncomfortable indoor environments. As such, there is a compelling need for an accurate and 

interpretable model for estimating load and indoor climate to bridge this knowledge gap. Among all control 
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strategies for community energy management, model predictive control (MPC) is appealing for real application 

(Chen et al. 2022b). Nevertheless, obtaining an accurate prediction model for MPC in real applications can be 

quite challenging (Komkrajang et al., 2014). This problem becomes more critical in the community due to the 

complexity, varying time scale, and uncertainties of the energy systems (Ning et al., 2019). 

A common method is to develop state-space models based on mass and thermal balance equations, as 

illustrated in previous works (Jin et al., 2021). Yet, this approach tends to oversimplify the system dynamics, 

leading to subpar performance when dealing with complex systems (Shang et al., 2019). Its dependency on 

extensive expert intervention also compromises its generality across diverse building architectures (Di Natale 

et al., 2022). On the other hand, data-driven approaches, like machine learning and deep learning methods, 

were developed in recent years and showed convincing performance in capturing system dynamics (Djenouri 

et al., 2019). Through the end-to-end training process, these data-driven models bypass the intricacies of 

traditional modeling, offering broad applicability (Sun et al., 2021). To solve the generalization and interpretation 

issues, researchers further developed physics-informed AI models in which physics laws are imported into the 

training process or model structure (Ajagekar et al., 2023). Such efforts were also completed in the building 

modeling field, as illustrated by the physics-constrained neural network with pre-defined parameter constraints 

(Drgoňa et al., 2021) and physics-consistent neural network model with specified model architecture (Di Natale 

et al., 2022). In our previous work (Xiao and You, 2023), we come up with a physically consistent deep learning 

(PCDL) method for building thermal modeling, which provides strict guarantees of following physics laws. Based 

on the current research, the application of a physics-informed AI model in MPC can be an appealing method for 

enhancing DR and community energy management performance (Hu et al., 2022). This work proposed a 

centralized MPC for community energy management embedding with the PCDL model, which is utilized to 

estimate the indoor climate and community loads. The PCDL model is developed with the presented physics 

consistency definitions and guarantees. Subsequently, it is integrated into the centralized MPC framework. The 

control objective is to reduce the total energy cost based on the real-time grid market and maintain comfortable 

indoor environments for each building. A test case on a student residential community at Cornell University is 

used to verify the performance of the proposed approach. The simulation results prove the superior performance 

of control-oriented generalization ability and control applications of the PCDL model compared to a long short-

term memory (LSTM), a Gated Recurrent Unit (GRU), and a Gaussian Process (GP) regression model. The 

main contributions of this work include the following: (1) introducing a novel PCDL-based modeling and 

centralized MPC framework for community energy management; (2) PCDL model prediction accuracy and 

generalization ability validation compared to alternative AI models; (3) demonstrating the superior closed-loop 

performance of the PCDL model through a simulation case. 

2. Physically consistent deep learning model 

In this section, we will briefly present the PCDL modeling process, including the physics consistency definitions, 

PCDL model architecture, and the physics consistency guarantee. The PCDL model is used to predict the 

community thermal dynamics (including indoor temperature, indoor relative humidity, and WT temperature) 

based on system inputs, such as space heating power and heating pump supply power. In the context of the 

community, we interpret physics consistency as straightforward positive or negative associations between the 

system's inputs and outputs. An illustrative example is the current indoor temperature's proportional rise with an 

increase in the preceding indoor heating power. This relationship can be written as: 

,  1, 2,3,...0k

k i

T
i k

HP
−


=


  (1) 

In the above notation, T stands for the indoor temperature, while HP denotes the heating power. The subscripts 

i and k are indicators for time steps. This equation encapsulates the basic relationship between indoor 

temperature and heating power, a connection that can be readily discerned through heuristic understanding. A 

detailed description of the physics consistency definition can be found in our previous work (Xiao and You, 

2023). In this work, we further extended the definition to the ground source heating pump (GSHP) and water 

tank (WT). Specifically, the water tank temperature is set as the system output with physically consistent inputs, 

including GSHP heating or cooling supply power and indoor heating or cooling load power. 

The architecture of the PCDL model is depicted in Figure 2, which includes both a recurrent neural network 

(RNN) cell and an LSTM cell. These components serve to classify all inputs into two categories: physically 

consistent inputs and other inputs. In Figure 2, the symbols x̃k, h̃k, xk, hk, and ck correspond to the physically 

consistent inputs, outputs of the RNN cell, other inputs, outputs of the LSTM cell, and the LSTM cell's memory 

states. By employing the proposed model structure, we effectively segregate the physically consistent inputs, 

which are processed within the RNN cell. The LSTM cell, on the other hand, is used to approximate other 
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dynamics that do not exhibit clear physics consistency. For example, parameters such as time information, the 

number of occupants, and solar irradiances are accounted for in the LSTM cell. The physics consistency 

guarantees are provided by additional parameter constraints: the state-to-state and input-to-state weighting 

parameters of the RNN cell are positive. Following the proof in our previous works (Xiao and You, 2023), the 

physics consistency guarantees can be written as 

1
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In the above expressions, TD stands for the derivatives of the tanh function. Given finite inputs, TD always yields 

positive outcomes. Up to this point, we have successfully demonstrated that all positive physics consistency can 

be characterized by the above expressions. To address negative physics consistency, one can simply modify 

the input 𝑥̃𝑘 to −𝑥̃𝑘 and follow the same process outlined above. 

 

Figure 1: PCDL model architecture: the RNN cell (top)and the LSTM cell (bottom) 

3. PCDL-based centralized MPC 

In this section, we will present the PCDL-based centralized MPC for community energy management. The 

community energy facilities included in this work are depicted in Figure 2. Photovoltaic (PV) panels with battery 

storage are used to supply renewable energy to the community. GSHP with WTs is used to supply hot and 

chilled water to the heating, ventilation, and air conditioning (HVAC) system, which maintains the indoor 

temperature and humidity of each building. As we discussed before, the PCDL model is implemented as an 

estimator for indoor climate and facility loads. The aim of the real-time MPC is to reduce the total energy cost of 

the community based on the real-time grid market price. The indoor thermal comfort and facility constraints are 

also considered in the MPC framework. In Table 1, we showed the control variables for the centralized MPC. 

During the control process, an open-loop optimization problem will be recursively solved at each time step, and 

the first control action will be utilized in the community system. 
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In the above expression, symbols gp, P, W, ε, f, 𝐱, 𝐱̂, u, z, K, and N represent the real-time grid price, power, 

weighting parameter, slack variable, function, system state, real-time measurement, control variable, 

disturbance, number of time steps, and number of slack variables (Lu et al., 2020); subscript k, grid, n, pred, 

LB, and UB represent the time step notation, grid, slack variable notation, prediction model, lower bound, and 

upper bound. The prediction function fpred includes not only the PCDL prediction process for community thermal 

dynamics but also the PV power generation prediction, predicted mean vote value (PMV) prediction, battery 

state of charge (SoC) prediction (computed based on battery charging/discharging power), and the purchased 

grid power prediction (computed based on power balance equation). The PV generation is predicted by an 

LSTM model, which is not included in this paper due to space limits (Abdel-Nasser and Mahmoud, 2019). The 

PMV values are computed based on indoor temperature and humidity to quantify indoor comfort (Yang et al., 

2022a). The system states x includes the indoor temperature, indoor relative humidity, SoC states, WT 
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temperature, and PMV values. Noted that slack variables are used to guarantee the feasibility of the problem. 

The control variables u are specified in Table 1. Their lower and upper bounds are based on facility capacities. 

Table 1: Control variables of the PCDL-based centralized MPC 

Control Variable Descriptions 

𝑃𝐻𝑒𝑎𝑡,𝐺𝑆𝐻𝑃 GSHP Heating Power (W) 

𝑃𝐶𝑜𝑜𝑙,𝐺𝑆𝐻𝑃 

𝑃𝐵𝑎𝑡𝑡𝑒𝑟𝑦 

𝑃𝐻𝑢𝑚 

𝑃𝐷𝑒ℎ𝑢𝑚 

𝑄𝐻𝑒𝑎𝑡 

𝑄𝐶𝑜𝑜𝑙 

GSHP Cooling Power (W) 

Battery Charging/Discharging Power (W) 

Humidification Power (W) 

Dehumidification Power (W) 

Space Heating Load (W) 

Space Cooling Load (W) 

 

Figure 2: Community energy facilities included in this work. The PV panels with battery storage are used to 

supply renewable energy to the community. GSHP with WTs is used to supply hot and chilled water to the HVAC 

system, which maintains the indoor temperature and humidity of each building 

Table 2: Loss values of the PCDL, LSTM, GRU, GP models on the training, validation, and test datasets 

Dataset 
Winter Case Summer Case 

PCDL LSTM GRU GP PCDL LSTM GRU GP 

Training Dataset 

Validation Dataset 

Test Dataset 

0.000354 

0.000356 

0.0146 

0.000318 

0.000318 

0.0235 

0.000294 

0.000290 

0.0181 

0.000282 

0.000224 

0.0179 

0.000166 

0.000170 

0.0104 

0.000126 

0.000125 

0.0110 

0.000145 

0.000148 

0.0161 

0.000118 

0.000112 

0.0243 

4. Simulation results 

The Townhouse Community, a student living community at Cornell University, comprises five similar two-story 

buildings, each with a basement. These buildings also feature an attic space. Each building covers a total area 

of 1,057.9 m2 and encapsulates a volume of 3,224.5 m3. Each floor, treated as a separate thermal zone, is 

served by a single HVAC system equipped with water coils and humidifiers. All buildings are supplied with hot 

and chilled water via a GSHP that includes storage tanks. The simulation models for this setup are created 

using EnergyPlus software and the Building Controls Virtual Test Bed (BCVTB) toolbox. In this process, 

individual buildings are defined within EnergyPlus, and the interconnections between the individual buildings 

are set up in the BCVTB toolbox (Yang et al., 2022b). The training and validation datasets were produced from 

the simulation model in an 80/20 ratio, with data recorded at 10 min intervals. More specifically, the dataset 

spanning from January 1st to January 14th (winter) and from July 1st to 14th (summer) in 2022 was employed for 

training the PCDL, LSTM, GRU, and GP model, the latter three serving as a basis for comparison. The data on 

January 15th (winter) and July 15th (summer) with a larger system state range was also generated as the test 

dataset to validate the generalization ability of all data-driven models. From Table 2, we can find that all the 

models present sufficient performance in both the training and validation dataset. However, The PCDL model 

presents smaller loss values in the test dataset, which demonstrates its generalization ability compared to other 

data-driven models. The physics consistency guarantees were validated through Figure 3, which is the indoor 

temperature simulation results of one typical thermal zone on January 15th. The PCDL model manages to 

generate physically feasible solutions, as inequality (1) shows and presents similar prediction results compared 

to the EnergyPlus model. The above feature of the PCDL model is also called control-oriented generalization 

ability due to the system’s physically consistent response to modified inputs.  
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Figure 3: The indoor temperature simulation results of one typical thermal zone on January 15th 

 

Figure 4: The closed-loop simulation results for community energy dispatching by using the PCDL-based MPC 

The closed-loop simulations were conducted from 8 a.m. to 24 p.m. on January 15th in 2022 with a 10 min 

control interval and 6 h prediction horizon. Besides the PCDL-based MPC, LSTM-based, GRU-based, and GP-

based MPC frameworks were also developed for comparison. The indoor thermal constraints were set as: 

(20.28 °C, 23.89 °C) for indoor temperature, (30 %, 60 %) for indoor temperature, and (- 0.5, 0.5) for PMV index. 

From the simulation, the indoor thermal constraint violations for the PCDL-based, LSTM-based, GRU-based, 

and GP-based MPC are 5.15 %, 49.35 %, 51.25 %, and 62.89 %. The PCDL model stands out in thermal 

comfort control results from its control-oriented generalization ability. In contrast, the other controllers struggled 

to uphold comfortable indoor climates, mainly due to their lackluster performance when dealing with scenarios 

outside of the training dataset. Figure 4 shows the energy dispatching simulation results obtained using the 

PCDL-based MPC. By capitalizing on the flexibilities offered by the GSHP, WTs, and battery systems, load-

shaving and shifting behaviors can be observed in the simulation results. These behaviors contribute positively 

to grid stability and energy cost reduction for consumers. 

5. Conclusion 

In this study, we have proposed a centralized MPC framework for community energy management. This 

framework employs a novel PCDL model designed to strictly comply with physical consistency by utilizing a 

unique model structure and imposing parameter constraints. Serving as a reliable predictor for load and indoor 

climate, the PCDL model was integrated into a centralized MPC framework. The aim was to optimize community 

energy distribution based on current measurements and real-time grid market conditions. We used a residential 

community at Cornell University as a simulation case to test the efficacy of the proposed control framework. The 

simulation results highlighted the control-oriented generalization ability of the PCDL model compared to the 

LSTM, GRU, and GP models. Additionally, the closed-loop simulation revealed significant indoor thermal 
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comfort improvements of 89.56 %, 89.95 %, and 91.81 % when employing the PCDL-based MPC, as compared 

to the other three data-driven MPC controllers. 
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