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A novel model predictive control (MPC) framework is proposed to optimize the energy management of integrated 

rooftop greenhouses and buildings, aiming to reduce control costs and the likelihood of climate violations. The 

centralized intelligent control approach employed for both the integrated rooftop greenhouse and the building 

ensures optimal conditions for crops and occupants. The integrated rooftop greenhouse utilizes waste heat and 

air from the building, resulting in reduced energy and CO2 consumption. The nonlinear dynamic models of 

temperature, humidity, and CO2 concentration for integrated rooftop greenhouse climate and building are first 

constructed. An integrated optimization problem is then formulated to acquire the optimal control decisions. The 

proposed MPC framework is implemented to regulate temperature, humidity, and CO2 level via controlling fans, 

pad cooling, shades, heating, ventilation and air conditioning systems, CO2 injection, and lighting systems. The 

indoor climate of an integrated rooftop greenhouse on a building in Brooklyn, New York, is controlled for the 

case study to show the advantages of the proposed nonlinear model predictive control framework. The results 

show that the average energy savings from the building to the integrated rooftop greenhouse amount to 15.2 % 

with the integration of the i-RTG and the host building under the proposed MPC framework. 

1. Introduction 

The rapid increase in urban populations, estimated to reach an additional 2.5 billion through population growth 

and urbanization by 2050 (Specht et al. 2014), necessitates addressing the issue of meeting the nutritional 

needs of the increasing population. The transportation and distribution of food into urban areas contribute to 

increased fossil fuel consumption, greenhouse gas emissions, and traffic congestion (Orsini et al., 2013). 

Consequently, interest in building-integrated agriculture (BIA) in urban regions has emerged (Montero et al., 

2017). BIA is a food production approach utilizing the space and resources of a building (Appolloni et al., 2021). 

One popular application is rooftop greenhouses (RTGs), which are greenhouses built on the rooftop of buildings 

using the vacant area in urban. However, safely and efficiently controlling the indoor climate of an integrated 

RTG (i-RTG) remains a challenge due to the increased complexity of energy optimization resulting from weather 

disturbances and building integration.  

The indoor climate of an i-RTG requires a smart advanced control method to ensure an optimal environment for 

crops. Montero et al. (2017) assessed RTGs in regions with mild winters, evaluating potential improvements in 

productivity. The climate model of the RTG was discussed in this work. However, the study focused on 

conducting simulations on the energy models instead of advanced control strategies. Benis et al. (2017) 

introduced an environmental analysis workflow for BIA with models considering energy, water, and solar 

radiation. Three urban farming cases for tomato cultivation adopted the workflow to obtain useful insights for 

preliminary evaluations (Liang et al., 2018). However, there is no control aspect considered in this work. To 

date, there remains a gap in the development of advanced control frameworks for i-RTGs. 

A novel nonlinear model predictive control (NMPC) framework for i-RTG and building climate control is proposed 

to reduce the combined CO2 and energy costs. Dynamic models for the i-RTG and building climate, 

encompassing temperature, humidity, and CO2 concentration, are initially developed. The dynamic models of 

temperature, humidity, and CO2 level for the i-RTG and the host building are derived from the energy and mass 

balance models that include transpiration and photosynthesis rate approximations. Past weather data is 
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collected to help develop the nonlinear climate model for the i-RTG and building. Subsequently, the proposed 

NMPC framework incorporates the nonlinear dynamic models for temperature, humidity, and CO2 level. The 

NMPC framework determines the control decisions that minimize the total control costs by solving a nonlinear 

programming problem repetitively. The proposed NMPC framework is implemented in a receding horizon 

procedure to regulate temperature, humidity, and CO2 concentration through fans, heating, ventilation, air 

conditioning (HVAC), pad cooling, blinds, CO2 injection, and lighting system. Lastly, we conduct simulations for 

an i-RTG atop a building in Brooklyn, New York, to showcase the performance of the proposed NMPC. 

2. Dynamic models of building-integrated rooftop greenhouse formulation 

The i-RTG, as shown in Figure 1, is situated on top of a building, with energy, moisture, and CO2 interconnected 

with the host building below. CO2 and waste heat from the building can be utilized in the RTG. During the 

daytime, the building supplies cooler air to help cool the RTG, while waste heat from the building is directed to 

the RTG at night to maintain an optimal crop environment. The actuators considered in the model include fans, 

HVAC, blinds, humidifiers, lighting, and CO2 injection. The optimal control decisions are obtained by the NMPC. 

 

Figure 1: Overview of exchange flows of energy, moisture, and CO2 between the i-RTG and the building. The 

control inputs of actuators are obtained by the NMPC controller. The system states, including temperature, 

humidity, and CO2, are monitored 

The system states of the RTG considered in this study include temperature, humidity, and CO2 concentration 

(Hu and You, 2022). The relationships between system states, control inputs, and disturbances are captured by 

a nonlinear dynamic model (Chen et al., 2022). The developed model predicts the future state of the RTG 

climate, which is an essential component in the NMPC framework. The estimated future system state helps 

minimize control costs and prevent detrimental greenhouse climates for crop growth. Plant growth can be 

hindered by excessively low or high indoor temperatures. In addition, crop yield could be boosted by higher CO2 

levels during photosynthesis (Shamshiri et al., 2018a). On the other hand, elevated humidity may lead to mold 

growth, negatively impacting crop quality and yield (Mortensen, 1987). Consequently, these system states 

require specific constraints to safeguard plants (Chen and You, 2021). The primary factors influencing i-RTG 

temperature are solar radiation qs, heat flux through the cover qc, pad cooling qpd, waste heat from supplemental 

lighting ql, ventilation qv, heating pipe qp, and exhaust air from the building. The continuous-time i-RTG 

temperature dynamic model is shown (Lin et al., 2021): 

d
i

s pa l c v p

dT
VC q q q q q q

dt
 = + + − − −  (1) 

where Ca, V, and ρ represent the air-specific heat, greenhouse volume, and air density. 

( )1s o s blinds aq K uA I = −  (2) 

,maxw pipe pipep w h hq C K T u u=  (3) 

,maxl l light tlighq u u=  (4) 
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( )occ s iq TA K T= −  (5) 

( ),maxv a fan i o fanq C Tu T u= −  (6) 

( ),maxpd p pad i padp pq A K T Tu u= −  (7) 

where As, τs, Ka, and Io  denote the greenhouse surface area, shading percentage, coefficient of the solar 

equation, and outdoor global radiation. The control inputs of fan speed, heating pipe water flow rate, shade 

curtain, and pad shutter are represented by upipe, ufan, ublind, and upad. Cw and ρw represent the water-specific 

heat and water density. Kp, Kc, and Kh are the coefficients of the equations for pad cooling, cover equation, and 

heating pipe. Tp, To, and Th denote the temperatures of air through the cooling pad, ambient temperature, and 

water in the heating pipe. Ap and τl are the pad area and heat conversion percentage. 

To combine the dynamic humidity models for the RTG and the building, we first list the factors considered in the 

dynamic humidity models. The relative humidity is determined by temperature and absolute humidity. The 

absolute humidity is first considered in the mass balance equation (Ajagekar et al., 2023). The mass balance 

equation of absolute humidity in the RTG considers the water net flows from  the fogging system mfog, 

evapotranspiration of the plants mtrans, and the ventilation mvent, and is given as: 

d

d
g

i
vent trans fo

h
m m

t
V m = + +  (8) 

The photosynthetic rate is greatly affected by the CO2 level and can be stimulated up to a certain rate when the 

CO2 level is elevated. CO2 concentration is an important factor in crop quality and yield. In the daytime, the CO2 

from occupants’ respiration helps the fertilization of the i-RTG. The mass balance equation for CO2 includes the 

CO2 injection Xinj, net consumption by photosynthesis Xpho, and CO2 net flow from ventilation Xvent, indoor CO2 

concentration level Xi, as shown below: 

d

d
j

i
ven pho intV

X
X X X

t
 = − +  (9) 

The most important factor for thermal comfort is indoor temperature (Chen and You, 2022). A dynamic 

temperature model is needed for the NMPC to predict future temperatures (Hu et al., 2022). A popular approach 

to constructing a building dynamic temperature model is to take building components analogous to resistances 

and capacitances within an electric circuit (Yang et al., 2022). The resistance-capacitance model has shown 

effectiveness in past studies (Oldewurtel et al., 2013). The dynamic temperature model for a multi-zone building 

is generated through Building Resistance-Capacitance Modeling (BRCM) Toolbox in this work (Sturzenegger et 

al., 2016). The dynamic temperature model for a multi-zone building generated by BRCM is based on the 

building materials, structures, and geometry (Hu et al., 2023). The dynamics are shown as follows: 

( )
,

1

1 , ,

u

u ik k u k k

n

v k vu i T k k i

i

T AT B u B v B v B T u+

=

= + + + +  (10) 

where Tk represents the temperatures of each room and building components, such as roof, floor, and walls. uk 

denotes the control inputs, and vk is the predicted disturbances (e.g., weather forecast). A, Bv, Bu, Bxu,i, and Bvu,i 

are the system matrices. 

Another important factor in building climate relating to thermal comfort is humidity (Zhang et al., 2014). The 

dynamic model for absolute humidity can first be developed using the mass balance equation on water (Xiao et 

al., 2023). The equation considering the water amount through ventilation, respiration, and control actuators is 

given as, 

d

d
m

i
ven res hutV

h
m m m

t
 = + +  (11) 

where hi denotes absolute humidity, mvent represents the ventilation, mres is the occupant respiration, and mhum 

denotes the net flow of control actuators for humidity.  

The energy, moisture, and CO2 are interconnected with the host building underneath. The CO2 and waste heat 

from the building can be utilized in RTG. An NMPC framework is developed to control the i-RTG and building 

indoor climate. The objective of the optimization problem in the framework is to minimize the combined energy 

and CO2 costs of the i-RTG and building. 

NMPC is a suitable approach for i-RTG and building climate control. The nonlinear dynamic models presented 

in the previous section are derived into a compact form, where H denotes the prediction horizon. The compact 
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form of the model includes the nonlinear vector function f(∙), control input u, disturbance sequences v, initial 

system states x0, and system state x, and can be written out as: ( )0 , ,x=x f u v . Besides the nonlinear dynamic 

model, the constraints are also important components of the NMPC framework. The system states and control 

inputs constraints are defined by x xG x g  and u uG u g . Gx, gx, Gu, and gu are the vectors defining the system 

states and control input constraints. The nonlinear optimization problem can be shown as: 

( )0

0

min  

s.t.  , ,

       

       

       

T

u

x x

u u

TJ

x

= +

=

 +





cc u

 x f u v

G

G

ε S

g ε

u

ε

ε

x

g

 (12) 

where ε, S, and cc denote slack variables, constraint violation penalty weight matrix, and cost coefficients. 

The proposed NMPC framework for i-RTG and building climate adopts a receding horizon approach. The 

weather forecast and system state data are first collected at each time step. The optimal control decisions can 

then be obtained by solving the nonlinear optimization problem. Among the sequence of optimal control inputs, 

only the control inputs for the first time step will be applied. The same procedure is followed in the next time 

step. The i-RTG and building climate are controlled by the NMPC framework when the control inputs are fed to 

actuators, including fans, HVAC, blinds, humidifiers, lighting, and CO2 injection. 

3. Case study on an integrated rooftop greenhouse and building 

 

Figure 2: Interconnection flow between i-RTG and the building. The arrows on the left are the fluxes transferred 

from the host building to the i-RTG; the right-hand side arrows are the fluxes from the i-RTG to the host building 

 
Figure 3: Control profiles of indoor climate in the (left) i-RTG and (right) host building for 30 days in winter during 

January 1-30, 2021. The lower and upper bounds are presented in red and green dotted lines 

In this study, we consider an i-RTG in Brooklyn, New York, as the target greenhouse and building. The i-RTG 

dimension is 40 m × 13 m × 4 m. We simulate an i-RTG growing tomatoes for closed-loop indoor greenhouse 
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climate control using the NMPC framework. Temperature, CO2 level, and relative humidity inside the i-RTG and 

building are controlled in this work. Outdoor temperature, outdoor humidity, outdoor CO2 level, and solar 

radiation are considered disturbances (Chen et al., 2022). Simulations are conducted for 60-day periods across 

four different seasons, commencing on January 1, April 1, July 1, and October 1 in 2021. Weather forecasts are 

gathered to solve the optimal control problem. The system state for the next time step is determined by the 

weather measurement data and the prediction model (Chen et al., 2022). The sampling interval of the NMPC 

controller is set as 15 min. The control horizon is set as 6 h. Figure 2 illustrates the interconnection flows between 

the i-RTG and the building, with CO2 flux, heat flux, cooling flux, and air flow rate represented by green, red, 

blue, and grey arrows. The CO2 flux is unidirectional, flowing only from the i-RTG to the building. The higher 

CO2 concentration in the building, resulting from occupants' respiration during working hours, acts as a natural 

CO2 fertilizer for the i-RTG, saving 52 kg/m2 of CO2 through integration with the building. Both heat flux and 

cooling flux are bidirectional, as the i-RTG and the building can help heat or cool each other depending on the 

time period. The heat flux from the building to the i-RTG and vice versa are 407 kWh/m2 and 29 kWh/m2, while 

the cooling flux values are 238 kWh/m2 and 17 kWh/m2. Due to the building's larger heat capacity, most energy 

is saved when air is transferred from the building to the i-RTG.  

Figure 3 illustrates the control trajectories for indoor temperature, humidity, and CO2 levels in the i-RTG and the 

building during January 1-30, 2021, winter season. The constraints for the i-RTG temperature are chosen 

distinctively over the day, accounting for the dark and light periods. The light and dark periods last from 4 am to 

12 am and from 12 am to 4 am. As the i-RTG transitions between the light and dark periods, the lower and 

upper constraints are adjusted gradually to circumvent sudden alterations in greenhouse temperature. A 

discernible diurnal pattern is evident, and the system state is kept in the region demarcated by the lower and 

upper constraints. Constraint violations occasionally arise because of forecast errors. For the i-RTG, humidity 

lower and upper constraints are suggested to be 50 % and 70 % (Shamshiri et al., 2018b). During winter, the 

humidity profile is better maintained within these constraints than those temperature trajectories. As the outdoor 

air has less humidity than the indoor air on colder days, the ventilation system assists in drawing ambient air 

when humidity exceeds the upper bound. CO2 injections occur from 4 am to 12 am during the light period, 

maintaining CO2 levels around 1,000 ppm to boost crop growth. CO2 injections cease in the dark period, allowing 

the CO2 level to gradually drop to ambient levels due to ventilation. 

Table 1: Energy consumption from the fan, HVAC, pad cooling system, CO2 injection, and lighting systems of 

the sum of i-RTG and building compared with stand-alone building and greenhouse 

 
Stand-alone 

building (kWh/m2) 

Stand-alone greenhouse 

(kWh/m2) 

i-RTG + building 

(kWh/m2) 

Savings percentage comparing 

stand-alone with integration 

Winter 174 127 278 7.6 % 

Spring 129 99 170 25.4 % 

Summer 161 71 212 8.6 % 

Fall 121 81 163 19.3 % 

Average 593 378 823 15.2 % 

Table 1 compares energy consumption in the i-RTG and the building across all seasons. Stand-alone building 

and stand-alone greenhouse cases are evaluated, where no integration exists between the two, and contrasted 

with the integrated case. Energy savings primarily occur at nighttime, especially during winter, with a 7.6 % 

reduction when the i-RTG and building are integrated. Energy is conserved by transferring the air from the 

building to the greenhouse when i-RTG temperatures drop at night. A substantial 25.4 % saving is achieved in 

spring due to New York's cool weather, while summer savings are less significant, resulting in an average energy 

saving of 15.2 % from building to i-RTG. 

4. Conclusions 

In this study, we proposed an NMPC framework to regulate temperature, humidity, and CO2 levels in an i-RTG 

and building indoor climate. Energy and mass balance equations were employed to generate nonlinear dynamic 

models for the i-RTG and building climate, encompassing temperature, humidity, and CO2 level. A nonlinear 

optimization problem that incorporates the dynamic models was then formulated for the purpose of determining 

the optimal control decisions for the i-RTG and building indoor climate. The proposed NMPC framework with 

the receding horizon approach generated the optimal control trajectory. The stability and feasibility issues of the 

proposed framework for controlling i-RTG and building climate were assessed. A case study was conducted for 

a 60-day production period across different seasons, focusing on the regulation of indoor temperature, relative 

humidity, and CO2 concentration levels in an i-RTG and building located in Brooklyn, New York. The results 
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demonstrated that the proposed NMPC framework could effectively minimize the total control costs for both the 

i-RTG and the building. 
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