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Technology has paved the way for economic growth and the reduction of poverty. To achieve this, an enormous 

amount of energy is required to sustain one’s economic activity. However, due to industrialisation, global energy 

demand has been an issue for global sustainability. Biofuels from microalgae can be a potential alternative fuel 

for various applications to mitigate climate change. However, producing biofuels from microalgae is 

economically unfeasible due to its high capital and operation cost. Hence, a bio-refinery concept is a promising 

opportunity to valorise microalgae biomass to fill this gap. To investigate the environmental impact of microalgae 

bio-refinery with different scenarios, a Life Cycle Assessment (LCA) methodology will be utilised. Using 

computational intelligence (CI) algorithms such as genetic programming (GP) and genetic algorithm (GA) 

determined the relationships between the input parameters of the system and the environmental impact 

generated. LCA results showed that the transesterification process has the largest contribution, with 51.5 % of 

the total weight, followed by the cultivation process of the system. Lastly, environmental factors were minimised 

using GA, giving the best combination of input parameters. 

1. Introduction 

Technological innovation has paved the way for human evolution and increased economic growth. A significant 

contributor to this is energy consumption. In addition, the increase in global population also increased the energy 

global demand, and its anthropogenic activities cause harm to the environment (Pierro et al., 2023). Biofuels 

from biomass sources are one of the potential alternatives to mitigate climate change that can act as a carbon 

sink while providing energy (Caporusso et al., 2023). A candidate for this is microalgae, a third-generation 

biomass feedstock that thrives from sunlight through photosynthesis. Contrary to traditional biofuel feedstocks 

such as corn, canola, coconut, and soybean, it resolves the food versus fuel issue while achieving higher oil 

yield per hectare (Chisti, 2007). In addition, it is a feedstock that can be converted into different biofuels and 

other bioproducts, such as biogas, bioethanol, biohydrogen, and biodiesel, through a biorefinery (Kumar et al., 

2022). However, producing biofuels from microalgae is still a challenge in terms of cost (Chisti, 2013). Hence, 

a microalgal biorefinery concept is introduced that can produce high-value products while minimising energy 

costs and greenhouse gas emissions (Chew et al., 2017). A biorefinery system involves two processing stages, 

upstream processing, which includes the cultivation process, and downstream processing, which includes the 

extraction and refining of the bioproducts extracted from microalgae. In addition, this concept plays a big role in 

resource utilisation of biomass resources to achieve a circular bio-economy (Khoshnevisan et al., 2020). 

There have been works on biorefinery concepts such as resource circulation of an integrated algal biorefinery 

(Solis et al., 2021), co-production of protein and renewable fuel products (Karan et al., 2022), and optimisation 

of biorefinery pathways and biomass harvest scheduling (Lim et al., 2022).  

Life cycle assessment (LCA) is a tool to investigate the potential environmental impact of a system. It can be 

used as a metric to assess circular economy requirements (Barkhausen et al., 2023). It has been used to 

investigate microalgae biorefineries in different scenarios, such as cultivation wastewater treatment (Josa and 
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Garfi, 2023). Another study by Bussa et al. (2021) conducted a sensitivity analysis on the target values of 

microalgae biorefineries using LCA. One important factor in designing biorefineries for sustainability is to 

minimise environmental impact. There are different mathematical models to enhance the design of biorefineries. 

However, with the rise of automation, such as the Internet of Things (IoT), biorefineries' production systems and 

processes will require the dynamicity of computational models due to the embedded systems installed. This will 

pose a problem due to the complex computational resource of mathematical models (Baba, 2021). Hence, there 

is a need to implement Computational intelligence models in designing biorefineries that involve IoT (Wang et 

al., 2022).  

Computational Intelligence (CI) methods are bio-inspired algorithms that can enhance embedded systems' 

accuracy and precision (Jin et al., 2023). Examples are the Artificial Neural Network (ANN) which is inspired by 

the function of the human brain; Fuzzy Logic systems based on fuzzy sets used for decision-making 

applications; and evolutionary computing, which transpired from evolutionary theories of natural selection such 

as Genetic Algorithm (GA). Studies have utilised data-driven algorithms applied to LCA, such as ANN and 

Adaptive Neuro-Fuzzy Inference System (ANFIS) (Nabavi-Pelesaraei, 2018). Hence, multigene genetic 

programming (GP), a regression tree and a GA combination is a lightweight symbolic regression model that can 

generate a mathematical equation for sensitive prediction based on non-linear features (Concepcion et al., 

2023). When the GP-generated equation is set as a fitness function for GA in determining the optimum (minimal 

environmental impact), the best set of values of endogenous parameters in the processes of biorefinery can be 

determined. The use of hybrid GP-GA in biorefinery is not yet existing as of this writing. Unlike other optimisation 

algorithms like ANN (Rivera et al., 2010) and the classical Life Cycle Optimization (Solis et al., 2021), which 

have been reported to be too sensitive and have the tendency to converge prematurely, the use of GP-GA will 

eliminate it through the built-in genetic hyperparameters with mathematical functions under GP.  

The objectives of this study are to evaluate the environmental impact of microalgae biorefinery using LCA and 

combining it with CI methods such as a novel application-specific hybrid GP-GA model to investigate the 

relationship of the different process input parameters in the biorefinery system and predict environmental factors 

with respect to the process inputs and to optimise these factors for environmental impact minimisation. This 

study contributes to the following: (1) the development of a lightweight symbolic regression model intended for 

minimising the environmental factors in microalgae biorefinery system; (2) the identification of which among the 

input processes in microalgae biorefinery for biodiesel emits the environment significantly; and (3) initial 

development of a decision support tool (GP-GA model) to biorefinery plant managers to immediately determine 

the environmental impact in their system. 

2. Methods 

The general framework of the environmental impact optimisation combining LCA and GP-GA methods is shown 

in Figure 1. The data generated from the LCA are the environmental impact process parameters. Data-driven 

computational intelligence models such as genetic programming are used to identify the relationship between 

the input and output parameters of the processes and environmental impact; lastly, it is used to identify the best 

combination and optimise the environmental impact.  

 

Figure 1: Environmental Impact optimisation process flow 

2.1 Life cycle assessment 

A Life Cycle Assessment was conducted using SimaPro software to evaluate the environmental impact of a 

microalgae biorefinery. The scope that was considered in this study is the different products produced by the 

refinery, such as biodiesel, biochar, regenerated heat, and power. In this study, a cradle-to-gate analysis was 

done, and 1.0 kg of biodiesel as the functional unit of the study. The life cycle inventory of the system boundary 

material and energy flow are derived from the study of Wu et al. (2018) and was encoded using similar 

transformation units and processes in the Ecoinvent database in the SimaPro software. The system boundary 

is shown in Figure 2. The main products of this biorefinery are biodiesel, glycerol, and biochar. The 

environmental impact assessment method used in this study is the EDIP 2003 impact assessment method.  
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2.2 Computational Intelligence Algorithms 

The relationship of environmental impacts to the input parameters based on the system boundary of the 

microalgae biorefinery system (Figure 2) was determined using genetic programming to generate symbolic 

equations. MATLAB software was used to apply the orthogonal least squares algorithm (GP-OLS) (Madár et 

al., 2005). This method generates equations to predict the behaviour of modelled physical systems, including 

the non-linear relationships in the provided data. The following input parameters used in the study are power 

used in cultivation, methanol in transesterification, heat in transesterification, solid residue in biochar, liquid 

residue input in Anaerobic Digestion, methane input in CHP, and power used in transesterification. The data 

needed as input for the CI algorithm are the different input data combinations of the described process. This 

was generated using Monte Carlo simulation and has different environmental impact values per combination. 

 

Figure 2: Microalgae biorefinery system boundary 

Table 1: Genetic Algorithm hyperparameter values 

Operators Values 

Population Size 100 

Number of Generations 100 

Selection rate 0.15 

Crossover rate 0.5 

Mutation rate 0.5 

The generated symbolic or transcendental equations are the output of the GP as the fitness function to get the 

fittest chromosome. GA is a bio-inspired optimisation algorithm that can solve complex problems. This algorithm 

is inspired by the process of natural selection and evolution. Hence, in a large solution space, this method can 

search for the best solution or the optimal set of parameters based on the criteria of the fitness value (Espanola 

et al., 2019). This method creates the best parametric combination of inputs in the biorefinery that achieves the 

lowest environmental impact. The solution that has the highest fitness value is the best possible solution 

generated. Table 1 shows the GA operator values, which are population size, number of generations, selection 

rate, crossover rate, and mutation rate.  

3. Results 

3.1 Life cycle assessment 

Different environmental impact categories are generated using the EDIP impact assessment method to 

characterise the impact of the biorefinery. Figure 3 and 4 shows that the transesterification process has the 

largest contribution of 51.5 % of the total weight. This is mainly to the chemicals and energy used in the process. 

This is followed by the cultivation process, which ranked second. 
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3.2 Minimization of environmental impact 

Genetic Programming generated symbolic equations determining the relationship of the environmental impacts 

(Table 3). In each environmental impact, there are different numbers of genes generated. In addition, these 

equations capture the changes in the impact results based on the input parameters. These are ranked based 

on the highest R2 to the lowest R2 to determine which environmental impact has high relationships with the input 

parameters. Ozone formation had the highest value of R2, while aquatic eutrophication had the lowest R2. In 

terms of the prediction accuracy of the model, the generated equations were ranked using their RMSE results. 

 

Figure 3: Environmental impact of microalgae on biofuel production 

Results show that hazardous waste, terrestrial eutrophication, ozone depletion, human toxicity (water), aquatic 

eutrophication (P), and radioactive waste had the lowest RMSE, meaning these models are accurate in 

prediction. 

 

Figure 4: Single-weighted environmental impact of each process in the system 

For this study, an example of global warming potential generated equations using GP and is used as input to 

the GA model. Equation 1 shows the generated equation of global warming potential generated by GP.  

𝑦 = 0.0296𝑥1 + 0.0242𝑥3 + 2.38𝑥5 + 21.6𝑥6 + 0.0381𝑥7 + 7.17𝑎𝑏𝑠(sin(𝑥5)) − 22.3 sin (𝑥4

3
2𝑥6

3𝑥7
3)

− 0.00101 sin(𝑥3 − 1.0 sin(𝑥3)) − 7.36 sin(𝑥2) − 23.8𝑥2
3 + 0.0296𝑥4

1
4𝑥6𝑥7 + 9.22 

(1) 

There are seven variables in this equation as a function of environmental impact. These variables are the input 

parameters in the processes in the biorefinery such as power used in cultivation, methanol in transesterification, 

heat in transesterification, solid residue input in biochar, liquid residue input in anaerobic digestion, methane 

input in CHP, and the power used in transesterification. The variables were selected and used for input variables 

due to the different attributions to the environmental impact. For example, the energy consumed in the cultivation 
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process will significantly impact the environment. In addition, the chemical used in the process, such as the 

transesterification process, can affect the ecosystem and human health. In the results, the Ozone formation 

human is one of the highest correlations with the input parameters. Reasons for this are the emissions, such as 

the different compounds such as nitrogen oxides or hydrocarbons generated by the system. 

Table 3: Generated environmental impact equations and their accuracy. 

Environmental impact R2 RMSE 

Ozone Formation Human 0.998 0.092908 

Radioactive Waste 0.994 0.01954 

Global Warming Potential 0.993 0.026599 

Human Toxicity (Water) 0.993 0.017531 

Hazardous Waste 0.991 8.61E-05 

Acidification 0.984 0.17017 

Ozone Formation Vegetation 0.976 0.10528 

Human Toxicity (Air) 0.935 0.032723 

Human Toxicity (Soil) 0.917 0.027483 

Slags and Ashes 0.843 0.02468 

Aquatic Eutrophication (N) 0.843 0.05702 

Ozone Depletion 0.841 0.014432 

Terrestrial eutrophication 0.841 0.00082067 

Bulk waste 0.827 0.027483 

Aquatic Eutrophication (P) 0.802 0.017531 

Another example case is where not all equations generated by GP have a relationship with all parameters. 

Equation 2 shows that there are only 3 variables considered in the equation for Human Toxicity (soil). 

𝑦 = 0.00725𝑥3 + 1.61𝑥4 + 0.00641 sin(𝑥3
1/2

) − 0.0135 cos (𝑥3 − 1.0𝑥3

1
2) − 41.7𝑥4

2 + 25.4𝑥6
2 + 0.245  (2) 

The only input parameters that affected this environmental impact are the heat in transesterification, solid 

residue input in biochar, and methane input in CHP. This was the same on the other environmental impact, 

which are Aquatic eutrophication (N) and (P), bulk waste, human toxicity (Air), and Slags and ashes had minimal 

relationships with four process inputs. 

Environmental impact minimisation was achieved by using GA, and the factors were individually optimised as a 

single objective function and treated separately. Table 4 shows the optimisation result of the minimised 

environmental impact. For example, Eq(1) above represents the global warming potential associated with seven 

input parameters.  

Table 4: Genetic Algorithm optimisation result 

Environmental impact  Optimised value X1 (MJ) X2 (kg) X3 (MJ) X4 (kg) X5 (kg)  X6 (kg) X7 (MJ) 

Global warming potential 2.03 0.074 0.004 2.61 0.003 0.015 0.001 0.2 

Human Toxicity (Soil) 0.258   2.61 0.043  0.001  

The values generated in the GA optimisation result per environmental impact can be a guide to designers. In 

addition, this model can be used to implement IoT and have embedded systems in a biorefinery to adjust the 

input parameters adhering to minimise environmental impact and improve sustainability.  

4. Conclusions 

The environmental impact optimisation of microalgae to biorefinery having multiple products with the 

combination of LCA and CI models such as GP-GA. The GP method generated transcendental equations that 

relate the environmental impact to the input parameters. These equations were optimised using GA by 

minimising environmental impact and selecting the best combination of process input amounts. The 

transesterification process had the highest environmental impact potential having 51.5 % of the total weight, 

followed by the cultivation process. In addition, the generated equations for global warming potential and human 

toxicity (soil) gave insights into how the identified input is related to the environmental impact. Lastly, 

environmental impacts were optimised using GA. An extension of this study is to have multiple objective 

functions resulting in a multi-objective optimisation considering the interactions of these environmental factors. 

The integration of an AI-based decision support system through digital twin technology that can trigger certain 

feedback to the system when reaching a certain threshold can also be developed for on-the-fly microalgae 

biorefinery optimisation. 
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