

 DOI: 10.3303/CET23103065

Paper Received: 30 April 2023; Revised: 27 June 2023; Accepted: 22 July 2023
Please cite this article as: Li D., Zheng T., Li J., Teymourifar A., 2023, A Hybrid Framework Integrating Machine-learning and Mathematical
Programming Approaches for Sustainable Scheduling of Flexible Job-shop Problems, Chemical Engineering Transactions, 103, 385-390
DOI:10.3303/CET23103065

 CHEMICAL ENGINEERING TRANSACTIONS

VOL. 103, 2023

A publication of

The Italian Association
of Chemical Engineering
Online at www.cetjournal.it

Guest Editors: Petar S. Varbanov, Panos Seferlis, Yee Van Fan, Athanasios Papadopoulos

Copyright © 2023, AIDIC Servizi S.r.l.

ISBN 979-12-81206-02-1; ISSN 2283-9216

A Hybrid Framework Integrating Machine-learning and

Mathematical Programming Approaches for Sustainable

Scheduling of Flexible Job-shop Problems

Dan Lia, Taicheng Zhenga, Jie Lia,*, Aydin Teymourifarb

aCentre for Process Integration, Department of Chemical Engineering, The University of Manchester, M13 9PL, United

Kingdom
bCEGE - Centro de Estudos em Gestão e Economia, Católica Porto Business School, Porto, Portugal

 jie.li-2@manchester.ac.uk

Flexible job shop scheduling has received considerable attention due to its extensive applications in

manufacturing. High-quality scheduling solutions are desired but hard to be guaranteed due to the NP-hardness

of computational complexity. In this work, a novel energy-efficient hybrid algorithm is proposed to effectively

address the scheduling of flexible job shop problems within reasonable time frames. The hybrid framework

hybridizes gene expression programming, variable neighborhood search, and simplified mixed integer linear

programming approaches to minimize the total energy consumption. It is utilized to address 20 benchmark

examples with moderate- or high-complexities. Computational results show that the hybrid algorithm can reach

optimality for all considered moderate-size examples within two seconds. The proposed algorithm demonstrates

significant competitive advantages relative to the existing mathematical programming approaches and a group-

based decomposition method. Specifically, it shortens the computational time over one order of magnitude in

some cases and leads to lower total energy consumption with a maximum decrease by 14.5 %.

1. Introduction

As environmental concepts awaken, incremental numbers of process industries pursue sustainable

manufacturing (Rakovitis et al., 2020) by developing energy-efficient scheduling approaches to optimize energy-

oriented objectives, such as minimizing total energy consumption (TEC), energy costs, or carbon emissions.

Flexible job-shop scheduling problems (FJSP) gather significant attention from investigators in various fields,

like enterprise management, aerospace, and semiconductor manufacturing (Chaudhry and Khan, 2015).

Heuristic dispatching rules (DRs), such as shortest processing time and first in first out, superior on easy

implementation and short time requirement (Kaban et al., 2012). They are commonly used by facilities to

address the FJSP with economic-oriented or time-oriented objectives. However, these rules are hard to

guarantee to yield high-quality solutions to various problems and seldom aim to optimize energy consumption.

Solution strategies based on artificial intelligence have been demonstrated (Xie et al., 2019) to generate better

solutions than the heuristic rules because the qualities of dispatching rules are improved by the algorithm’s self-

learning and training. More importantly, artificial intelligence-based approaches so the scheduling problems in

a reasonable time frame.

Gene expression programming (GEP) variants have been proven capable of extracting efficient dispatching

rules and exploring competitive solutions in a short time frame for FJSP. However, they always fail to reach

optima, even in small- or moderate-scale instances. This can be validated by the comparisons between results

from the GEP (Zhang et al., 2017) and a mathematical programming approach (Rakovitis et al., 2022). Results

manifest that mathematical formulation and GEP are superior in solution accuracy and computational efficiency.

A hybrid algorithm integrating these two kinds of approaches is promising to combine their advantages and

generate even good solutions in reasonable computational time. Attempts to hybridize artificial intelligent

algorithms (e.g., a genetic algorithm) and exact algorithms (e.g., MILP model) are made by Paul et al. (2022) –

optimizing batteries, and Ribas et al. (2013) – for pipeline scheduling. Their investigations reveal the superiority

385

of the hybrid algorithm relative to single algorithms. In this work, we aim to develop a hybrid approach to integrate

multiple algorithms for scheduling FJSP with energy-oriented objectives.

2. Problem statement

A FJSP example involves a set of jobs 𝑘 ∈ 𝐊 = {1,2,3, … , 𝐾} and machines 𝑗 ∈ 𝐉 = {1,2,3,… , 𝐽}. Each job 𝑘 is

required to be processed through a sequence of operations 𝑖 ∈ 𝐈𝑘 , whose number is predefined but not

necessarily identical among jobs. Machines being able to operate 𝑖 are included in a set 𝐉𝑖. The optimization

objective is to minimize TEC, including the direct, indirect and unload energy consumption. Parameters of FJSP

are given as follows. An operation 𝑖 of job 𝑘 processed on a machine 𝑗 are featured by its processing time (𝑃𝑘𝑖𝑗
T)

and cutting power (𝑃𝑘𝑖𝑗
C). To save energy, a machine 𝑗 during idle slots selects a machine mode between switch

off-on mode with energy consumption 𝐸𝑗
O and standby mode consuming unload power (𝑃𝑗

U) per unit time. It is

assumed that all parameters are deterministic. Jobs are released at the beginning of the scheduling horizon. In

addition, machines are switched on/off exactly before/after the first/last operations processed on them.

3. Hybrid algorithm

The proposed hybrid algorithm (HA) is elaborately described in this section. Three components, including GEP,

variable neighborhood search (VNS) and Mixed Integer Linear Programming (MILP) formulation, are integrated

as illustrated in Figure 1. Scheduling solutions generated from the optimizing algorithm in each step are

transferred to the successor step as input, through which the searching process advances in a positive direction

and solution qualities improve incrementally. A parallel computing approach is applied to effectively promote

computational efficiency. Specifically, the master-slave parallel model and asynchronous parallel computing

mode (Sevkli and Aydin, 2007) for job shop scheduling and (Akbay et al., 2020) for portfolio optimization are

implemented to parallelize the GEP and VNS. Parallel computing is implemented for all MILP formulations by

setting ‘option threads=0’ in GAMS (2023).

Figure 1: Framework of the hybrid algorithm

3.1 Gene expression programming

The DRs extracted for assignment and sequence are supposed to be discrepant as different decisions have

various sensitivities on identical attributes. In the designed GEP, DRs for machine assignment and operation

sequences are represented using different parts in one chromosome, illustrated using DR-A and DR-S. They

have identical features and structures, being constructed using the same approach, but may vary in the gene of

each position due to randomness. The multigene structure is utilized to construct chromosomes, as exemplified

by Figure 2, which presents the part of the chromosome for machine assignment. Each gene partitioned into a

head and a tail, is composed of functions and terminals with fixed lengths of symbols. Function sets in all genes

comprise of five operators (+,−,×,÷, √). Similar to the work of Zhang et al., (2017), there are five attributes (i.e.

processing time 𝑃𝑘𝑖𝑗
T , cutting power 𝑃𝑘𝑖𝑗

C , unload power 𝑃𝑗
U, idle time 𝐷𝑟𝑗, number of unscheduled operations 𝑁𝑘𝑖

𝑟),

which are closely associated with TEC, included in the terminal sets. Different genes are connected using linking

functions, which are represented using a linking gene (see the last gene in Figure 2). The terminal set in the

linking gene is different from those in other genes, where terminals denote the ordinal numbers of genes in the

386

chromosome. Corresponding dispatching rules could be constructed from the chromosome using depth-first

decoding approach (Yang et al., 2016).

Figure 2: An example of chromosome for assignment (DR-A) with two genes and a linking gene

The evolutionary process of GEP is illustrated in Figure 1. Genetic operators include selection, crossover, and

mutation to screen individuals with good adaptability, inherit metrics and maintain diversity. The tournament

selection strategy is utilized here to make comparisons between two candidate individuals and reserve the better

one with lower TEC. The comparison and selection repeat until the new population composed of selected

individuals have an identical size to the parent population. Adaptive crossover and mutation (Chen et al., 2019)

are adopted to improve genetic efficiency and prevent algorithm premature even stagnation. Adaptive crossover

rate 𝐶𝑔
r and mutation rate 𝑀𝑔

r at current generation 𝑔 are calculated using Eqs.(1)-(2), with 𝐶0
r = 0.6 and 𝑀0

r =

0.3. Variables 𝑇𝐸𝐶𝑔
1, 𝑇𝐸𝐶𝑔

2 and 𝑇𝐸𝐶𝑔
3 express the average, minimum and maximum values of 𝑇𝐸𝐶, among all

individuals in current generation 𝑔. Evolutionary process of GEP stops until the maximum generation is reached,

as pictured in Figure 1.

(1)

(2)

3.2 Variable neighborhood search

VNS algorithm, as an extraordinary local-search approach, exploits promising solutions near the current

dominated solutions. It hybridizes with GEP in serial and improves solution qualities starting from elite solutions

given by GEP. A knowledge-guided NS is designed to adjust the machine assignment of the current solution. In

detail, experiences on machine assignment are learned from elite solutions in earlier iterations, and the

knowledge feeds back to the search process to locate promising areas, which is inspired by the work of Zheng

et al. (2016). Probabilities 𝑃𝑟𝑜𝑖𝑗
𝑔
 of assigning unit 𝑗 to an operation 𝑖 at the iteration 𝑔 is stored in the knowledge

base. The probabilities are initialized as Eq(3) at 𝑔 = 0. And they update in each iteration using Eq(4), where

𝑥𝑒𝑔𝑖𝑗
L = 1 if 𝑖 is assigned to 𝑗 for the elite solution 𝑒 at iteration 𝑔. Eq(5) makes normalization for all machines of

one operation. To find new nneighboringsolutions, the machine 𝑗 for 𝑖 would be mutated to another 𝑗’: (𝑗′ ∈

𝐉𝑖 , 𝑗
′ ≠ 𝑗) that is selected from the knowledge base using roulette wheel method.

(3)

(4)

(5)

3.3 Mixed Integer Linear Programming approach

Solutions generated from the artificial intelligent algorithms would be optimized using a local sequence-based

MILP formulation to adjust the decisions on timing and machine mode (see Figure 1). Assigning decisions of

machine 𝑗 to an operation 𝑖 of job 𝑘 and sequencing relations between two operations on the same machine are

expressed using parameters 𝑊𝑘𝑖𝑗 and 𝑋𝑘𝑖𝑘′𝑖′𝑗 . That is 𝑊𝑘𝑖𝑗 = 1 if an operation 𝑖 of job 𝑘 is processed by a

machine 𝑗, and 𝑋𝑘𝑖𝑘′𝑖′𝑗 = 1 if operation 𝑖 of job 𝑘 immediately precedes operation 𝑖’ of job 𝑘’ on machine 𝑗. We

define sets of binary (𝑧𝑘𝑖𝑗) and continuous (𝑦𝑘𝑖𝑗) variables to express the machine mode of switch off-on and

standby. If a machine 𝑗 is switched off after processing an operation 𝑖 of job 𝑘, the variable 𝑧𝑘𝑖𝑗 equals to one

(i.e. 𝑧𝑘𝑖𝑗 = 1). Otherwise, 𝑧𝑘𝑖𝑗 = 0 and 𝑦𝑘𝑖𝑗 = 1, as handled by Eq(6). Set 𝐈𝑘𝑗 includes operations 𝑖 ∈ 𝐈𝑘 being

able to be processed on a machine 𝑗.

(6)

𝐶𝑔
r = 𝐶0

r ⋅ 1 + 0.2 ⋅
𝑔

𝑔max ⋅
𝑇𝐸𝐶𝑔

12

 𝑇𝐸𝐶𝑔
3 − 𝑇𝐸𝐶𝑔

2
2

+ 𝑇𝐸𝐶𝑔
12
 ∀𝑔

𝑀𝑔
r = 𝑀0

r ⋅ 1.2

(𝑔−1)⋅𝑇𝐸𝐶𝑔
1

 𝑇𝐸𝐶𝑔
3−𝑇𝐸𝐶𝑔

2 +𝑇𝐸𝐶𝑔
1

0.3

 ∀𝑔 > 1

𝑃𝑟𝑜𝑖𝑗
𝑔=0

=

1

 𝐉𝑖
 𝑗 ∈ 𝐉𝑖

0 𝑗 ∉ 𝐉𝑖

𝑃𝑟𝑜𝑖𝑗
𝑔

= 𝑃𝑟𝑜𝑖𝑗
𝑔−1

+ 0.5 𝑥𝑒𝑔𝑖𝑗
L

𝑒

𝑃𝑟𝑜𝑖𝑗
𝑔

=
𝑃𝑟𝑜𝑖𝑗

𝑔

 𝑃𝑟𝑜
𝑖𝑗 ′
𝑔

𝑗 ′∈𝐉𝑖

𝑦𝑘𝑖𝑗 + 𝑧𝑘𝑖𝑗 = 𝑊𝑘𝑖𝑗 ∀𝑘, 𝑗, 𝑖 ∈ 𝐈𝑘𝑗

387

One operation 𝑖 that is the successor operation of 𝑖′ in the same job (i.e. 𝑖′ ∈ 𝐈𝑘 , 𝑖 ∈ 𝐈𝑘 , 𝑖 = 𝑖′ + 1), is enforced to

start after the finish of 𝑖’. Variables 𝑇𝑘𝑖 expresses the start time of 𝑖 in job 𝑘.

(7)

A continuous variable 𝑆𝑇𝑘𝑖𝑗 denotes the duration of standby mode for a machine 𝑗 after processing 𝑖 ∈ 𝐈𝑘. It

equals the time interval between the operation 𝑖 and its immediate precedence operation 𝑖′ ∈ 𝐈𝑘′ on 𝑗.

(8)

(9)

Standby energy consumption 𝐸𝑆𝑘𝑖 is proportional to the duration of standby time and the unload power of the

machine 𝑗. Variable 𝑆𝑇𝑘𝑖𝑗 is enforced as zero if the machine does not remain standby after processing 𝑖 ∈ 𝐈𝑘.

(10)

(11)

Makespan is larger than the finish of the last operation (𝐋𝐈𝑘) in all jobs, as Eq(12). In any machine, accumulated

time used to process operations and keep standby is supposed to be no larger than the makespan.

(12)

(13)

We aim to minimize 𝑇𝐸𝐶, where direct energy consumption (𝑃𝑘𝑖𝑗
T ⋅ 𝑃𝑘𝑖𝑗

C) is attributed to processing operations,

indirect energy consumption (𝛽 ∙ 𝑀𝑆) is required by auxiliary facilities or subsidiary sectors (e.g. lighting and air

conditioning), and the unload energy is consumed by machines during idle slots.

(14)

An operation should start later than the minimum required time for all predecessor operations in the same job.

(15)

Eqs(16)-(17) list all the continuous and binary variables of the model. We complete the development of the

mathematical model M, which serves as the third-step optimization in the hybrid framework. The local sequence-

based mathematical model M comprises of Eqs(6)-(17).

(16)

(17)

4. Computational results

We now evaluate the computational performance of the designed HA and assess its capability on exploring

high-quality solutions. There are 20 benchmark examples (i.e. Examples 1-20 in Table 1) originated from works

of Zhang et al. (2017) – emphasizing evolutionary generation and Rakovitis et al. (2022) further increasing

energy efficiency. Specifically, Examples 1-10 in this work correspond to the Examples 1-10 from Rakovitis et

al., (2022). Examples 10-20 with high complexities are the Examples 41-50 from Rakovitis et al., (2022).

Comparative studies are conducted relative to existing algorithms referred from literature and the model M

proposed in this work. The unit-specific event-based MILP formulation and grouping-based decomposition

approach proposed by Rakovitis et al., (2022) are abbreviated as MU and GD. All algorithms are implemented

and run using a desktop computer with AMD RyzenTM 9 3900X 3.8 GHz and 48 GB RAM running Windows 10.

Parallel computing is implemented for HA and all MILP approaches (i.e. M and MU) with 12 cores. In the spirit

of fair comparisons, all algorithms address identical examples without additional pre-processing.

Table 1 reveals the computational results of the proposed HA and the literature best results among MU and GD.

Here, the relative gaps disclose the relative deviations between the TEC results from HA and literature

approaches, and a negative value of the relative gap evinces HA yields better scheduling solutions with lower

TEC. We observe the same objective results from HA versus the literature algorithms for moderate-size

examples (i.e., Examples 1-10) listed in Table 1. The proposed HA is capable of finding the global optima, which

𝑇𝑘𝑖 ≥ 𝑇𝑘𝑖 ′ + 𝑃𝑘𝑖 ′ 𝑗
T ⋅ 𝑊𝑘𝑖 ′ 𝑗

𝑗∈𝐉𝑘𝑖′

 ∀𝑘, 𝑖′ ∈ 𝐈𝑘 , 𝑖 ∈ 𝐈𝑘 , 𝑖 = 𝑖′ + 1

𝑇𝑘 ′ 𝑖 ′ ≥ 𝑇𝑘𝑖 + 𝑃𝑘𝑖𝑗
T ⋅ 𝑊𝑘𝑖𝑗 + 𝑆𝑇𝑘𝑖𝑗

𝑗∈𝐉𝑘𝑖

− 𝐻 ∙ 1 − 𝑋𝑘𝑖𝑘 ′ 𝑖 ′ 𝑗
𝑗∈ 𝐉𝑘𝑖∩𝐉𝑘′ 𝑖′

 ∀𝑘, 𝑘′ , 𝑖 ∈ 𝐈𝑘 , 𝑖′ ∈ 𝐈𝑘 ′ ,∃𝑗 ∈ (𝐉𝑘𝑖 ∩ 𝐉𝑘 ′ 𝑖 ′)

𝑇𝑘 ′ 𝑖 ′ ≤ 𝑇𝑘𝑖 + 𝑃𝑘𝑖𝑗
T ⋅ 𝑊𝑘𝑖𝑗 + 𝑆𝑇𝑘𝑖𝑗

𝑗∈𝐉𝑘𝑖

+ 𝐻 ∙ 1 − 𝑋𝑘𝑖𝑘 ′ 𝑖 ′ 𝑗
𝑗∈ 𝐉𝑘𝑖∩𝐉𝑘′ 𝑖′

 + 𝐻 ⋅ 𝑧𝑘𝑖𝑗
𝑗∈𝐉𝑘𝑖

 ∀𝑘, 𝑘′ , 𝑖 ∈ 𝐈𝑘 , 𝑖′ ∈ 𝐈𝑘 ′ ,∃𝑗 ∈ (𝐉𝑘𝑖 ∩ 𝐉𝑘 ′ 𝑖 ′)

𝐸𝑆𝑘𝑖 = 𝑆𝑇𝑘𝑖𝑗 ⋅ 𝑃𝑗
U

𝑗 ∈𝐉𝑘𝑖

 ∀𝑘, 𝑖 ∈ 𝐈𝑘

𝑆𝑇𝑘𝑖𝑗 ≤ 𝑚𝑖𝑛(𝐻,
𝐸𝑗

O

𝑃𝑗
U

) ⋅ 𝑦𝑘𝑖𝑗 ∀𝑘, 𝑗, 𝑖 ∈ 𝐈𝑘𝑗

𝑇𝑘𝑖 + 𝑊𝑘𝑖𝑗 ⋅ 𝑃𝑘𝑖𝑗
T + 𝑆𝑇𝑘𝑖𝑗

𝑗∈𝐉𝑘𝑖

≤ 𝑀𝑆 ∀𝑘, 𝑖 ∈ (𝐈𝑘 ∩ 𝐋𝐈𝑘)

 𝑊𝑘𝑖𝑗 ⋅ 𝑃𝑘𝑖𝑗
T + 𝑆𝑇𝑘𝑖𝑗

𝑖∈𝐈𝑘𝑗𝑘

≤ 𝑀𝑆 ∀𝑗

𝑇𝐸𝐶 = 𝑊𝑘𝑖𝑗 ⋅ 𝑃𝑘𝑖𝑗
T ⋅ 𝑃𝑘𝑖𝑗

𝐶

𝑖∈𝐈𝑘𝑗𝑘𝑗

+ 𝛽 ⋅ 𝑀𝑆 + 𝐸𝑆𝑘𝑖
𝑖∈𝐈𝑘𝑘

+ 𝐸𝑗
O ⋅ 𝑧𝑘𝑖𝑗

𝑖∈𝐈𝑘𝑗𝑘𝑗

𝑇𝑘𝑖 ≥ 𝑚𝑖𝑛
𝑗∈𝐉𝑘𝑖′

 𝑃𝑘𝑖 ′ 𝑗
T

𝑖 ′<𝑖 ,𝑖 ′∈𝐈𝑘

 ∀𝑘, 𝑖 ∈ 𝐈𝑘

𝐸𝑆𝑘𝑖 ≥ 0,𝑆𝑇𝑘𝑖𝑗 ≥ 0,𝑇𝑘𝑖 ≥ 0, 1 ≥ 𝑦𝑘𝑖𝑗 ≥ 0

𝑧𝑘𝑖𝑗 ∈ {0, 1}

388

are validated by the exact approach MU. With higher complexities, HA has been demonstrated to have

significant strengths in decreasing energy consumption with a maximum reduction of 14.5 % (6,670.1 kW vs.

7,800.2 kW in Example 20). More importantly, computational times are reduced by an approximate factor of 10

(e.g. 305 s vs. 3,600 s) while addressing examples 12,13 and 15. Additionally, relative to MU, we do not need

to predefine the event points, and as a result an iterated procedure is not required to find an appropriate number

of event points to generate the optimality, which exerts excessive computational burdens for addressing

industrial-scale problems.

Table 1. Computational results of benchmark examples from HA and literature existing algorithms (Zhang et

al., 2017; Rakovitis et al., 2022)

Example HA Existing algorithms

TEC (kW) CPU time (s) TEC (kW) CPU time (s) Relative Gap (%)

1 63.03 1.2 63.03 0.1 0

2 122.44 1.1 122.44 0.1 0

3 75.74 1.1 75.74 0.1 0

4 146.63 1.1 146.63 0.1 0

5 78.40 1.1 78.40 0.1 0

6 220.74 1.1 220.74 0.1 0

7 97.54 1.1 97.54 0.2 0

8 146.81 1.0 146.81 0.1 0

9 230.66 1.1 230.66 0.2 0

10 161.06 1.1 161.06 0.2 0

11 3,475.7 303 3,565 301 -2.5

12 3,582.8 305 3,635.8 3,600 -1.5

13 3,726.8 309 3,884.4 3,600 -4.1

14 5,122.8 368 5,357.5 412 -4.4

15 4,654.9 356 4,899.7 3,600 -5.0

16 5,016.5 353 5,256.1 304 -4.6

17 4,941.5 354 5,033.9 401 -1.8

18 5,038.3 357 5,595.8 400 -10.0

19 6,238.3 413 6,946.2 1.2 -10.2

20 6,670.1 410 7,800.2 0.8 -14.5

Table 2 reports the comparative studies between the hybrid algorithm and the single GEP or exact algorithm M,

where NA means no available solutions are found within the time resource limitation. We can observe that the

hybrid algorithm always shows better performance. In terms of the solution quality, HA results in better balance

between exploitation and exploration features, manifesting better objective results (i.e. lower TEC) certainly

generated relative to GEP. Concerning the computational efficiency, HA leads us to decrease the computational

time over one order of magnitude relative to model M with saving the energy consumption of 577 kW

(5,016.5 kW vs. 5,593.6 kW). One can conclude that combining multiple approaches, it is evident to benefit from

them to generate significantly better solutions in less computational time.

Table 2 Comparative studies among algorithms HA and GEP, M

Example HA GEP M

TEC (kW) CPU time (s) TEC (kW) CPU time (s) TEC (kW) CPU time (s)

11 3,475.7 303 3,674.1 32 3,433.1 3,600

12 3,582.8 305 3,710.5 31 3,472.2 3,600

13 3,726.8 309 4,089.0 32 3,525.9 3,600

14 5,122.8 368 5,337.8 49 5,274.2 3,600

15 4,654.9 356 4,927.7 49 4,818.9 3,600

16 5,016.5 353 5,392.6 48 5,593.6 3,600

17 4,941.5 354 5,144.0 47 5,305.4 3,600

18 5,038.3 357 5,517.7 50 5,144.3 3,600

19 6,238.3 413 6,501.2 68 NA 3,600

20 6,670.1 410 6,954.6 72 NA 3,600

389

5. Conclusions

In this work, we present a hybrid algorithm hybridizing artificial intelligence and the mathematical programming

approach to expose the energy-oriented dispatching rules and yield good-quality solutions. Exact algorithms are

integrated to approach optima by adjusting decisions on timing and machine modes. Case studies demonstrated

that the hybrid algorithm can reach optimality for all considered moderate-complexity examples within seconds

and lower energy consumptions (with a maximum of 14.5 %) using significantly reduced computational time (by

a factor of 10) in complicated instances relative to the existing exact and decomposition approaches.

Acknowledgments

Dan Li and Taicheng Zheng appreciate the financial support from China Scholarship Council - the University of

Manchester Joint Scholarship (201908130170, 202106440020). Jie Li appreciates financial support from

Engineering and Physical Sciences Research Council (EP/T03145X/1, EP/V051008/1).

References

Akbay M.A., Kalayci C.B., Polat O., 2020, A parallel variable neighborhood search algorithm with quadratic

programming for cardinality constrained portfolio optimization. Knowledge- Based Systems, 198, 105944.

Chaudhry I.A., Khan A.A., 2016, A research survey: review of flexible job shop scheduling techniques.

International Transactions in Operational Research, 23(3), 551-591.

Chen X., Zhang B., Gao D., 2019, Algorithm based on improved genetic algorithm for job shop scheduling

problem. 2019 IEEE International Conference on Mechatronics and Automation (ICMA), 04-07 August 2019,

951-956, DOI: 10.1109/ICMA.2019.8816334.

GAMS, 2023, System Overview. <https://www.gams.com/products/gams/gams-language/>, accessed

24/07/2023.

Kaban A.K., Othman Z., Rohmah D.S., 2012, Comparison of dispatching rules in job-shop scheduling problem

using simulation: a case study. International Journal of Simulation Modelling, 11(3), 129-140.

Paul S., Ganguly B., Adhikary U., 2022, A Hybrid MILP-GA Algorithm to Optimize Battery Mix System in Active

Distribution Networks. 2022 IEEE VLSI Device Circuit and System (VLSI DCS). IEEE, 123-128.

Rakovitis N., Li D., Zhang N., Li J., Zhang L., Xiao X., 2020, Novel Approaches for Energy-Efficient Flexible Job-

Shop Scheduling Problems. Chemical Engineering Transactions, 81, 823-828.

Rakovitis N., Li D., Zhang N., Li J., Zhang L., Xiao X., 2022, Novel approach to energy-efficient flexible job-shop

scheduling problems. Energy, 238, 121773.

Ribas P.C., Yamamoto L., Polli H.L., Arruda L.V., Neves-Jr F., 2013, A micro-genetic algorithm for multi-

objective scheduling of a real world pipeline network. Engineering Applications of Artificial Intelligence, 26,

302-313.

Sevkli M., Aydin M.E., 2007, Parallel variable neighbourhood search algorithms for job shop scheduling

problems. IMA Journal of Management Mathematics, 18(2), 117-133.

Xie J., Gao L., Peng K., Li X., Li H., 2019, Review on flexible job shop scheduling. IET Collaborative Intelligent

Manufacturing, 1, 67-77.

Yang Y., Li X., Gao L., Shao X., 2016, Modeling and impact factors analyzing of energy consumption in CNC

face milling using GRASP gene expression programming. The International Journal of Advanced

Manufacturing Technology, 87, 1247-1263.

Zhang L., Tang Q., Wu Z., Wang F., 2017, Mathematical modeling and evolutionary generation of rule sets for

energy-efficient flexible job shops. Energy, 138, 210-227.

Zheng X.L., Wang L., 2016, A knowledge-guided fruit fly optimization algorithm for dual resource constrained

flexible job-shop scheduling problem. International Journal of Production Research, 54(18), 5554-5566.

390

