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Negative Emissions Technologies (NETs) are now necessary solutions for climate change mitigation. NET 

portfolios that recommend a technology mix of individual NETs at smaller scales are preferred to ease their 

implementation's environmental and social impact. Resource constraints using the Planetary Boundaries as a 

framework can be used to ensure that the multi-footprints of NETs are within the planet’s safe operating space. 

However, for regional-scale applications, the uncertain resource constraints may highly depend on local 

conditions and the decisionmaker. There is a lack of studies investigating the effect of uncertain resource 

constraints on NET portfolios. This work addresses the research gap by applying a global sensitivity analysis 

using a space-filling Design of Experiments (DOE) strategy. First, a fuzzy, multi-period non-linear mathematical 

programming model is formulated. Computer experiments using a Latin hypercube space-filling DOE and 

regression analysis are then performed to investigate the effects of the varying resource constraints on the 

optimum NET portfolio. This approach enables the investigation of interactions and higher order effects of the 

parameters on the responses, the total negative emission potential and net present value of the portfolio, and 

the generation of response surface graphs, which are not available using traditional sensitivity analysis. The 

approach is demonstrated using a case study in the Association of Southeast Asian Nations region. 

1. Introduction 

Negative Emissions Technologies (NETs) sequester carbon dioxide from the atmosphere and include solutions 

such as Afforestation/Reforestation (AR), BioChar (BC) application, Soil Carbon Sequestration (SCS), 

Bioenergy with Carbon Capture and Storage (BECCS), Enhanced Weathering (EW), and Direct Air Carbon 

Capture and Storage (DACCS). Based on the latest Intergovernmental Panel on Climate Change (IPCC) report, 

NETs have become part of the portfolio of solutions against climate change to counter residual emissions from 

the hard-to-abate sectors (IPCC, 2022). The large-scale implementations of NETs have environmental footprints 

that may negatively impact the environment and society; thus, it is recommended to implement portfolio solutions 

of individual NETs at reduced scales (Tan et al., 2022). The Planetary Boundaries (Rockström et al., 2009) 

serve as a framework for evaluating the resource constraints of NETs. For regional scales, the resource 

constraints can be estimated by scaling down the Planetary Boundaries but are still highly dependent on local 

conditions and the decisionmaker. Hence, there is a strong need to investigate the effect of resource constraints 

on the corresponding optimum NET portfolio.  

Traditional sensitivity analysis in optimization software uses dual prices for linear models and Lagrange 

multipliers for non-linear models (Tan et al., 2015). For non-linear models, Lagrange multipliers are restricted 

since they only investigate the changes in the optimal value of the objective function with respect to small 

changes in the parameters, and they fail to investigate the combined effects of simultaneous changes in the 

parameters (Tan et al., 2015). To address these limitations, a study proposed the use of the space-filling Design 

of Experiments (DOE), particularly the Latin Hypercube Design (LHD), as a global sensitivity analysis (Tan et 

al., 2015). Ibrahim et al. (2009) also proposed using a small design, such as LHD or Sobol sequence and an 

ANOVA-type decomposition to assess the higher-order effects. The LHD, as DOE, has an advantage because 

of its simplicity and ease of generation of the designs (Ibrahim et al., 2009). 
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Only a very limited number of studies have investigated the effect of varying resource constraints on NET 

portfolios. Migo-Sumagang et al. (2021) performed a sensitivity analysis on a linear programming model for 

optimizing NET portfolios by varying the resource constraints one parameter at a time. The limitation of this 

approach is that the interaction and higher-order effects are not captured in the analysis. Analyzing these effects 

on resource constraints evaluation is important because they show which resources have interactions. When 

an interaction between parameters exists, the effect of one parameter depends on the value of the other 

parameter; but when there is no interaction, the effect of these parameters is simply additive (Ibrahim et al., 

2009). Another study developed a fuzzy mathematical programming model to optimize NET portfolios under 

fuzzy resource constraints and used the dual price value reported by the optimization software for the sensitivity 

analysis (Migo-Sumagang et al., 2022). However, this approach has the same limitations as the previous study. 

There is an overall lack of studies investigating the effect of varying resource constraints on NET portfolios.  

To address this research gap, this work first develops a novel fuzzy mixed-integer non-linear programming 

(MINLP) model to optimize a NET portfolio under multi-footprint and multi-period constraints. Next, a global 

sensitivity analysis is performed on the optimization model through computer experiments using the space-filling 

LHD and subsequent regression analysis. The rest of the paper is organized as follows. Section 2 discusses 

the methodology performed in this work. Section 3 presents a case study on the Association of Southeast Asian 

Nations (ASEAN) region. And section 4 summarizes and concludes the main points of this study.  

2. Methodology 

This section describes the problem statement, optimization model, and the methodology based on space-filling 

DOE.   

2.1 Formal problem statement 

The problem is formally stated as follows. Given a set of resources. Each resource j is characterized by its fuzzy 

resource constraint (Fjk) for each period k, defined in the interval (Fjk
L , Fjk

U ). Given a set of NETs. Each net i is 

characterized by its fuzzy environmental footprints (Mijk) for each resource j and for each period k, defined in 

the interval (Mijk
L , Mijk

U ). Given the upper (xik
U ) and lower (xik

L ) annual NET capacities, cumulative capacity (Si), 

and costs (Cik) of NETs for each period k. NETs using geological storage are given a fuzzy cumulative geological 

storage limit defined in the interval (QL, QU). Given the possible synergistic interactions between NETs, two 

synergistic NETs are subject to a resource discount rate (αilj) when implemented together in the portfolio. Given 

a carbon price (Pk) for each period. The cost of NET and the carbon price are subject to an economic discount 

rate (rE). The aim of the problem is to determine the optimum negative emission allocation (xik) of each NET in 

each period while maximizing both the fuzzy net present value (NPV) of the NET portfolio defined in the interval 

(VL, VU), and the fuzzy negative emission potential (G) defined in the interval (GL, GU) while meeting the resource 

and capacity constraints. The planning horizon consists of time intervals given by ∆K. 

2.2 Optimization model 

The fuzzy optimization model based on the formulation of (Zimmermann, 1978) is depicted in Eq(1) to (16). The 

objective function maximizes the overall degree of satisfaction (λ) in Eq(1), where λ is restricted between 0 and 

1. The fuzzy constraint in Eq(3) aims to maximize the NPV of the portfolio subject to the discount rate (rE). As λ 

is maximized and approaches the value 1, the right term of Eq(3) approaches the upper limit of the NPV (VU) 

as opposed to the lower limit (VL). Similarly, Eq(4) maximizes the negative emission potential (G) of the portfolio 

since the right term approaches the upper limit (GU) as opposed to the lower limit (GL) as λ approaches the value 

1. Eq(5) introduces a binary variable (bik) and ensures that the negative emission allocation (xik) of each NET 

in each period k is within than the upper (xik
U ) and lower (xik

L ) capacity limits. Eq(6) is the cumulative NET capacity 

constraint (Si). Eq(7) is the fuzzy cumulative geological storage capacity constraint (Q) for NETs with geological 

storage. The topological parameter (zi) is assigned a value of 1 for NETs with geological storage; otherwise, it 

is set to 0. The right-hand side of Eq(7) approaches the lower limit of the geological storage (QL) as λ approaches 

the value 1, which is preferred by a conservative decisionmaker. Eqs(8) to (10) introduce another binary variable 

(intilk), which activates and takes the value of 1 when two NETs i and l are present simultaneously in the 

portfolio, based on the formulation by Weber et al. (1990). This variable will be used in the evaluation of any 

synergistic resource interactions between NETs. Eq(11) is the resource constraint with an evaluation of 

synergistic resource interactions. The left side of Eq(11) evaluates the fuzzy NET environmental footprints (Mijk), 

which must be less than the fuzzy resource constraint (Fjk). The second term on the right side of Eq(11) is the 

synergistic resource interaction term, which activates when both the resource discount rate (αilj) and binary 

variable intilk  are non-zero. Eq(12) and (13) are the fuzzy constraints for the resource limit ( Fjk ) and 
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environmental footprint (Mijk), which are minimized and maximized, respectively, following the preference of a 

conservative decisionmaker. Eq(14) is a special case for synergistic land interaction, which allows NETs to be 

implemented on the same land simultaneously (Migo-Sumagang et al., 2022). Eq(15) ensures that once a NET 

is activated, it will remain activated in the portfolio throughout the rest of the planning horizon. The model 

described here is a mixed integer non-linear programming (MINLP) model. 

max λ  (1) 

0 ≤ λ ≤ 1  (2) 

∑ ∑ xik(Pk − Cik) ((
(1+rE)∆K−1

rE
) (1 + rE)−∆Kk) ≥ VL + λ(VU − VL)ki   (3) 

∑ ∑ xikΔKk ≥ GL + λ(GU − GL) i   (4) 

bikxik
L ≤ xik ≤ bikxik

U   , ∀i, k (5) 

∑ xik∆Kk ≤ Si , ∀i (6) 

∑ ∑ xikzi∆Kki ≤ QU + λ(QL − QU)   (7) 

bik ≥ intilk  , ∀i, l, k    (8) 

blk ≥ intilk  , ∀i, l, k   (9) 

bik+blk − 1 ≤ intilk  , ∀i, l, k    (10) 

∑ xikMijk ≤ Fjk + ∑ ∑ αiljintilkxikMijklii   , ∀j, k  (11) 

Fjk ≤ Fjk
U + λ(Fjk

L − Fjk
U ) , ∀j, k  (12) 

Mijk ≥ Mijk
L + λ(Mijk

U − Mijk
L )  , ∀i, j, k  (13) 

βixikMijk + ∑ (1 − βl)xilMijkl ≤ Fjk  ,   ∀i, k   (14) 

bik ≤ bi(k+1) , ∀i, k, k + 1 (15) 

bik, blk, intilk ∈ {0,1}  (16) 

2.3 Sensitivity analysis using a space-filling DOE 

The following procedure is based on the study by (Tan et al., 2015), using the LHD sampling technique, first 

described by McKay et al. (1979).  

• Given an optimization model. Its objective function is defined by f(x) where x is the decision variable. 

The optimal solution of the objective function is given by f(x∗). 

• The model has uncertain parameters (b) limited by upper (bU) and lower (bL) bounds, thus defining the 

factor space. A unique optimal solution can be derived for each point within the factor space. 

• A space-filling design, LHD, is used as a sampling technique in the factor space. Sufficient points are 

sampled to satisfy the degrees of freedom for statistical analysis.  

• The model is evaluated for each point in the design. 

• Regression analysis is done on the solutions, giving a statistically significant polynomial regression 

model that closely approximates the true response surface of the MINLP to parameter variations. This 

derived model serves as an estimate of the optimal solution f(x∗) as a function of the uncertain 

parameters (b).   

The procedure is implemented on the MINLP optimization model described in the previous subsection. The 

optimization model is solved using LINGO 19.0 by Lindo Systems, which uses the branch and bound algorithm 

solver for non-linear models (Gau and Schrage, 2004). The generation of the LHD (McKay et al., 1979), 
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statistical analysis, and generation of the response surfaces are done using the software Stat-Ease 360 by Stat-

Ease.  

3. Case study 

The case study investigates the optimal NET portfolio in the ASEAN region throughout the end of the 21st 

century. Six terrestrial NETs, AR, BECCS, DACCS, SCS, BC, and EW, are included in the study. The data on 

the fuzzy NET environmental footprints (Mijk), regional NET capacities (xik
L  and xik

U ), and the fuzzy negative 

emissions target (GL and GU) are obtained from various references as first gathered by Migo-Sumagang et al. 

(2022). The fuzzy geological storage limit is 49.7 (QL) to 54 (QU) Gt CO2 (Asian Development Bank, 2013). The 

planning horizon is from 2020 to 2100, divided into eight periods with a time interval of ∆𝐾 = 10 years. This 

corresponds to a cumulative negative emissions target projection equal to 30 (GL) to 58 (GU) Gt CO2 for the 

region (Migo-Sumagang et al., 2022). Future projections of carbon prices (Strefler et al., 2021) and NET costs 

(Fuss et al., 2018) are used, as first seen in the case study of Migo-Sumagang et al. (2023). For BECCS, 

DACCS, and EW, cost projections are based on land competition and technology improvements (Creutzig et 

al., 2019), while for AR, SCS, and BC, costs are assumed to be stable. The future regional NET capacities are 

based on scaled-down global NET capacities (Rueda et al., 2021) as in the case study of Migo-Sumagang et 

al. (2023). It is assumed that EW and BC have land and cost synergistic interaction (αilj = 10 %)  since the two 

NETs can be applied on the same land and can share supply chains. An economic discount rate equal to 3 % 

is used, which is the central value used in literature (U.S. IAWG, 2021). The fuzzy upper limits (Fjk
U ) of the 

resource constraints in 2020 are 45.70 Mha for land, 1135 km3 for water, 19.50 EJ for energy, and 6.2 Mt for 

both nitrogen and phosphorous (Migo-Sumagang et al., 2022). These initial values are projected into the future 

using GDP calculations, assuming limited resources for land, water, nitrogen, and phosphorous; and a stable 

and steady supply of renewable energy (Migo-Sumagang et al., 2023). On the other hand, the fuzzy lower limits 

(Fjk
L ) are set to zero for minimization purposes.  

The sensitivity analysis following the procedure in section 2.3 evaluates the uncertain upper limits in the resource 

constraints. For the computer experiments, the upper bounds are set to equal to the fuzzy upper limits (Fjk
U ) 

while the lower bounds are assumed to be half of these values. Note that setting the lower bounds to zero in 

the computer experiments potentially results in infeasible solutions. For simplicity, nitrogen and phosphorous 

are considered as one factor (as nutrients) as they have the same upper bound. Four factors, land (A), water 

(B), energy (C), and nutrients (D), and two responses, the negative emission potential (G) and NPV, are 

considered in the computer experiments. The generated LHD has 16 design points and can detect linear, two-

factor interaction, and quadratic effects. The fit summary is checked during the statistical analysis. The F-value 

tests the significance of adding linear, two-factor interaction, and quadratic terms to the regression model (State-

Ease, 2021). A small p-value (Prob > F) indicates that adding these terms has improved the regression model 

(State-Ease, 2021). Table 1 summarizes the statistical analysis of the regression model for the response G, and 

Table 2 summarizes the analysis of the response NPV. Terms with a p-value less than 0.05 indicate a 

statistically significant signal, while the signs indicate the direction of the effect.  

For response G , the resulting regression model is linear since the quadratic effects (A2, B2, C2, D2) are 

insignificant. The response surface graph of land (A) and water (B) in Figure 1a shows the linear relationship of 

the two parameters on the response. Only the individual effects of three terms (A, B, and D) are found to be 

statistically significant, with a positive effect on the response. A positive effect is expected since increasing the 

resource limits would increase G. It is possible that energy is not found to be statistically significant on response 

G due to the binding effect of the other resources within the bounds considered. The interaction terms (AB, AC, 

AD, BC, BD) are not found significant, indicating that the effects of the parameters on G are additive.  

For response NPV, all three terms (A, B, and D), the interaction between land and water (AB) and between land 

and nutrients (AD), and the quadratic terms for land (B2) and energy (C2) are found to be significant. The linear 

effect of energy is insignificant, but due to hierarchy, it is included in the model. Negative interaction effects 

indicate that the combined effect of the two factors is less than the sum of their individual effects. This means 

the combined effect of land with water (AB) or the nutrients (AD) do not increase or equal the sum of their 

individual effects on the NPV. The response surface graphs of the combined effects are shown in Figures 1b 

and 1a. Quadratic effects indicate a non-linear relationship, which is true for water (B2) and energy (C2). The 

negative quadratic effect of water (- 5.52) indicates that for low values of the parameter, the effect on the NPV 

is positive, but for higher values, the effect becomes negative. On the other hand, the positive quadratic effect 

of energy on NPV (+ 1.25) suggests that the relationship is exponential. Overall, the region with the highest 

degree of satisfaction considering both G and NPV is the region with warm colors in the response surface graphs 

(see Figure 1).  
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Table 1: Effect of model parameters on the negative emission potential (𝐺)  

Term Estimate p-value Remark 

C, AB, AC, AD, BC, BD, CD, A2, B2, C2, D2 0* > 0.05 Not statistically significant 

A + 0.4671 0.0118 Statistically significant positive effect 

B + 0.9607 < 0.0001 Statistically significant positive effect 

D + 0.3954 0.0270 Statistically significant positive effect 

Table 2: Effect of model parameters on the NPV  

Term Estimate p-value Remark 

AC, BC, BD, CD, A2, D2 0* > 0.05 Not statistically significant 

A + 26.91 < 0.0001 Statistically significant positive effect 

B + 42.25 < 0.0001 Statistically significant positive effect 

C - 0.065 0.7913 Not statistically significant 

D + 25.52 < 0.0001 Statistically significant positive effect 

AB - 2 0.0034 Statistically significant negative effect 

AD - 2.53 0.0012 Statistically significant negative effect 

B2 - 5.52 < 0.0001 Statistically significant negative effect 

C2 + 1.25 0.0271 Statistically significant positive effect 

 

 

    
 

Figure 1: Response surface graphs of land and water on 𝐺 (a) and NPV (b); and land and nutrients on the NPV  

4. Conclusions 

A fuzzy multi-period MINLP model for NET portfolio optimization has been developed and subjected to global 

sensitivity analysis using a space-filling DOE. The approach has an advantage over the Lagrange multipliers 

being used by commercial software for the sensitivity analysis of non-linear models since the latter is limited to 

investigating only small changes in the optimal value of the objective function with respect to small changes in 

the parameters. The space-filling DOE sensitivity analysis also has an advantage over the traditional sensitivity 

analysis because it evaluates the combined effects of the parameters. To illustrate the approach, the case study 

shows a linear effect of land, water, and nutrients on the total negative emission potential of the portfolio and 

the linear, interaction, and quadratic effects of the parameters on the NPV. The case study demonstrates the 

detection of interaction and quadratic effects and the generation of response surface graphs, which are not 

available in a traditional sensitivity analysis. Future work can investigate the effect of other factors on the 

responses.  
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