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Carbon capture and storage (CCS) is an important technology that mitigates the effect of climate change. It 

involves the capture of CO2 from flue gas, transporting it through pipelines, and storing it underground in 

geological reservoirs. The characterization of the properties of geological reservoirs (i.e., storage capacity and 

flow rate limit) are subject to uncertainties. These uncertainties affect the planning of CCS systems, especially 

in determining which CO2 sources are to be matched with geological sinks subject to capacity and injectivity 

constraints. In this study, a Neutrosophic Linear Programming (NeLP) model is developed for optimal planning 

of CCS systems considering these uncertainties modeled as neutrosophic sets. The model involves taking into 

account the degree of satisfaction when minimizing risks, the degree of dissatisfaction when overestimating 

storage parameters, and the degree of indeterminacy when defining accurate storage site parameters. A case 

study will be used to illustrate the model. The model was able to generate insights as to how much CO2 must 

be injected into the geological reservoir to minimize the risks arising from uncertainty. The total CO2 stored in 

geological reservoirs varies from one risk behavior to another. 

1. Introduction 

The effect of climate change globally has been an alarming issue that needs serious action from different 

countries. The drastic increase in CO2 concentration in the atmosphere is attributed to the use of fossil fuels for 

energy production. Different technologies can contribute to the reduction of CO2 emissions from industrial 

sources, and not a single technology can address the issue of climate change. These technologies include 

renewable energy as an alternative energy source, process efficiency improvements, and carbon capture and 

storage (CCS) technology. CCS is an important technology that allows the simultaneous use of fossil fuels for 

energy production and the reduction of CO2 emissions from these sources. The technology involves the capture 

of CO2 from flue gas, transporting it through pipelines, and storing it in geological reservoirs (Gibbins and 

Chalmers, 2008). The adaption of CCS technologies in a region consists of identifying multiple CO2 sources for 

retrofitting CO2 capture technologies and connecting these sources to multiple geological storage sites. Large-

scale implementation of CCS requires systematic planning using mathematical approaches to generate the 

maximum benefit from the technology. However, uncertainties in the characteristics of the geological reservoir 

pose a significant challenge in the effective planning of CCS systems (Middleton et al., 2012). A mathematical 

model which captures the complex nature of the uncertainties in the characteristics of geological reservoirs is 

needed to optimize the system while managing the risks associated with these uncertainties. 

Several mathematical approaches are proposed for the planning of CCS systems. A review of these approaches 

was made by Tapia et al. (2018), highlighting the important questions for developing future models for the 

planning and design of CCS systems. Tan et al. (2010) developed a model where the decision to retrofit power 

plants with CO2 capture is considered. Multi-period optimization of CCS systems can be done in a discrete-time 

(Tan et al., 2013) or continuous-time (Tan et al., 2012) setting with an alternate formulation proposed (Lee and 

Chen, 2012). In these approaches, sources and sinks in the systems are matched, and the operation involved 

in a source-sink connection is scheduled. A fuzzy linear programming approach was developed by Tapia et al. 

(2014) for managing risk arising from fuzzy set-like uncertainties. Stochastic optimization approaches have been 

applied to the planning and design of carbon, capture, utilization, and storage (CCUS) systems under price 
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uncertainties (Leonzio et al., 2020) and the planning of CCS systems under operational uncertainties (He et al., 

2014). Region-wide optimization of CCUS systems is done by Wang et al. (2022), considering carbon life cycle 

metabolism analysis. These models have contributed to generating important insights into planning CCS 

systems in different settings. However, most of these models assume deterministic characteristics of storage 

sites except for the study by Tapia et al. (2014) and He et al. (2014). In this study, a neutrosophic set-based 

mathematical programming approach is applied to develop a model that incorporates the complex nature of the 

uncertainty of storage characteristics as neutrosophic sets.  

Neutrosophic sets are mathematical objects that represent uncertainty as an extension of fuzzy sets (Zadeh, 

1965) and intuitionistic fuzzy sets (Atanassov, 1986). It involves three components of membership, non-

membership, and indeterminacy to describe the belongingness of an element to a set (Smarandache, 2006). It 

has been applied to different decision analysis tools such as data envelopment analysis (Abdelfattah, 2019), 

analytic hierarchy process (Abdel-Basset et al., 2017), and DEMATEL (Abdel-Basset et al., 2018). Several 

applications of tools that apply neutrosophic sets are in renewable energy selection (Azzam et al., 2022), 

evaluation of negative emissions technologies (Tapia, 2021), and site selection for waste-to-energy plant (Meng 

et al., 2023). These tools have been able to generate insights for policymakers to plan sustainable systems 

effectively. To date, neutrosophic sets in CCS have not yet been applied. In this study, neutrosophic sets will 

be applied to model the uncertainty in storage characteristics and manage the risks associated with it. A 

neutrosophic linear programming model (NeLP) is developed for this purpose. Each component of the 

neutrosophic set is represented in the NeLP model to characterize the uncertainty in storage characteristics. 

The rest of the paper is organized as follows. Section 2 discusses the formal problem statement for the NeLP 

model, while Section 3 provides the details of the model, including the objective function, constraints, decision 

variables, and parameters. Section 4 discusses the case study to illustrate the model. Lastly, Section 5 

discusses the conclusions and future works.  

2. Problem statement 

The formal problem statement for the CCS system is as follows: 

• The system consists of m CO2 sources and n geological sinks.  

• Each CO2 source i (i =1, 2, …m) is characterized as a point source capable of being retrofitted with a 

CO2 capture technology that operates at a range of CO2 flow rate from FL
i to FU

i Mt/y. The operating 

life of the source is fixed at ΔTi y. 

• Each sink is characterized by storage capacity and injectivity expressed as neutrosophic triplets [CL
j, 

CM
j, CU

j] and [DL
j, DM

j, DU
j]. This sink has a lower bound capacity and injectivity of CL

j Mt and DL
j Mt/y 

and an upper bound of CU
j Mt and DU

j Mt/y. It is assumed that the middle values CM
j Mt and DM

j Mt/y 

are the most possible estimates of capacity and injectivity. The lower bound represents a conservative 

estimate while the upper bound represents an optimistic estimate.  

• The risks associated with estimating the characteristics of the geological can be described as a 

neutrosophic set which consists of three components – membership, non-membership, and 

indeterminacy. The membership component is represented as the degree of satisfaction towards 

minimizing risk for overestimating the storage parameters. Consequently, the non-membership is 

represented as the degree of dissatisfaction associated with increased risk. The indeterminacy 

captures the degree of inaccuracy of different levels of storage characteristics, being the most possible 

estimate is treated with the lowest indeterminacy. 

• It is assumed that at the beginning of the planning horizon, all sources and sinks are available at the 

same time.  

• The objective of maximizing the total CO2 captured and stored is a fuzzy goal where the degree of 

satisfaction increases as the CO2 stored increases. It is assumed that the perception of the decision 

maker for this goal is just fuzzy in nature.  

• The model’s objective is to maximize the aggregated neutrosophic components based on the overall 

degree of satisfaction, degree of dissatisfaction, and degree of indeterminacy. Figure 1a shows the 

neutrosophic nature of the storage characteristics, which are both applicable to capacity, while Figure 

1b shows the fuzzy goal.  

• Two parameters are established for adjusting the model depending on the risk appetite of the decision 

maker. The first one is the tolerance of the decision maker towards dissatisfaction (TE), while the 

second one is the tolerance of the decision maker towards indeterminacy (TI) of the storage 

characteristics estimate. These are also shown in Figure 1a.  
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Figure 1: Representation of the membership, non-membership, and indeterminacy of (a) neutrosophic storage 

characteristics and (b) fuzzy goal 

3. Neutrosophic Linear Programming Formulation 

The objective function of the NeLP model is to maximize the overall degree of satisfaction, α, and minimize the 

overall degree of dissatisfaction, β, and indeterminacy, γ. This objective is aggregated as a linear function in 

Eq(1) 

max 𝛼 − 𝛽 − 𝛾  (1) 

Subject to:  

∑ ∑ ∆𝑇𝑖𝑓𝑖𝑗𝑗𝑖

∑ ∆𝑇𝑖𝐹𝑖
U

𝑖
≥ 𝛼  (2) 

𝐶𝑗−𝐶𝑗
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  ∀𝑗 (6) 
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𝑀 

𝐶𝑗
𝑈−𝐶𝑗

𝑀 ≤
𝛾

1−𝑇𝐼
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 ∑ 𝑓𝑖𝑗𝑖 ≤ 𝐷𝑗  ∀𝑗 (10) 
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𝐶𝑗
𝐿 ≤ 𝐶𝑗 ≤ 𝐶𝑗

𝑈  ∀𝑗 (11) 

𝐷𝑗
𝐿 ≤ 𝐷𝑗 ≤ 𝐷𝑗

𝑈  ∀𝑗 (12) 

𝐹𝑖
𝐿𝑏𝑖𝑗 ≤ 𝑓𝑖𝑗 ≤ 𝐹𝑖

𝑈𝑏𝑖𝑗   ∀𝑖, 𝑗 (13) 

∑ 𝑏𝑖𝑗𝑗 ≤ 1  ∀𝑖 (14) 

𝑏𝑖𝑗 ∈ {0,1}  ∀𝑖, 𝑗 (15) 

𝑓𝑖𝑗 ≥ 0  ∀𝑖, 𝑗 (16) 

The decision variables for this model are the flow rate of CO2 that will be allocated from source i to sink j denoted 

by fij and the binary variable, bij that denotes whether the connection from source i to sink j is to be made (bij = 

1) or not (bij =0). The overall degree of satisfaction, α, is the minimum among the degrees of satisfaction for the 

fuzzy goal and for the storage capacities and injectivities. Eq(2) denotes the constraint for the fuzzy goal, while 

Eq(3) and Eq(4) are the constraints for the degrees of satisfaction for the capacities and injectivities. The overall 

degree of dissatisfaction, β, is the maximum among the degrees of dissatisfaction of the storage capacities and 

injectivities which are represented as constraints in Eq(5) and Eq(6). Then, Eq(7) and Eq(8) show that the overall 

degree of indeterminacy is the maximum among degrees of indeterminacy for storage capacities and 

injectivities. The parameters TE and TI in Eq(5) to Eq(8) are the risk tolerance parameters towards 

dissatisfaction and indeterminacy. Eq(9) denotes the estimated capacity, Cj to be greater than the sum of CO2 

stored in a particular sink while Eq(10) denotes the estimated injectivity to be greater than the sum of the CO2 

flow rate injected. Both of these estimates are bounded between maximum and minimum values as shown in 

Eq(11) and Eq(12) for capacity and injectivity. Eq(13) represents the constraints of CO2 flow rate from source i 

to sink j. Eq(14) denotes that a particular source is only connected to one sink. Lastly, Eq(15) and Eq(16) provide 

the nature of the decision variables. The optimization model is implemented in AIMMS with a built-in CPLEX 

solver in a PC with 3.59 GHz of processor and 16Gb of RAM. The case study that will be presented in the 

following section has a negligible computational time.  

4. Case study 

To illustrate the model, a case study adapted from Tapia et al. (2014) is used. The case study consists of five 

CO2 sources which are based on fossil fuel-based power plants in Region IVA in the Philippines and one offshore 

geological reservoir. These power plants can be retrofitted with CO2 capture technologies at a given range of 

operating capacities as shown in Table 1. The capacity of the geological sink is assumed to be neutrosophic in 

nature with capacity as a neutrosophic triplet [150, 200, 300] Mt and an injectivity of [15, 18, 23] Mt/y. The lower 

bound of the triplet represents the most conservative estimate of the storage characteristics while the upper 

bound is the most optimistic. The middle value represents the most accurate estimate that can be obtained 

through repeated measurements or estimation of the geological reservoir. A total of 305 Mt of CO2 is capturable 

from all CO2 sources.  

Table 1: CO2 source data for the case study  

Source Minimum Flow Rate 

(Fi
L) 

Minimum Flow Rate  

(Fi
U, Mt/y) 

Operating Life  

(ΔTi, y) 

Maximum Capturable 

CO2 (Mt) 

Source 1 3.20 6.40 11 70.4 

Source 2 1.35 3.00 16 48.0 

Source 3 0.90 1.50 13 19.5 

Source 4 2.88 3.60 13 46.8 

Source 5 4.50 6.00 20 120 

Solving the model using the case study above yields a model with 34 constraints and 19 variables. A summary 

of the results in different decision environments is shown in Table 2. Note that the model can be adjusted to 

these decision environments by adjusting the expert risk parameters TE and TI. A fuzzy decision environment 

is set when TE=1 and TI=1 while an intuitionistic fuzzy decision environment is set when TE=0 and TI=1. Based 

on the results, the most conservative solution is when the decision environment is intuitionistic fuzzy where the 

total CO2 stored is equal to the minimum estimate of the storage. This result is due to the nature of the 
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membership and non-membership components of the storage characteristics to push the solution towards 

minimum risks of overstorage. For the fuzzy decision scenario, a compromise solution is achieved by balancing 

both fuzzy objectives and fuzzy storage characteristics. Optimizing in this condition results in a solution where 

89 % of the total capturable CO2 is stored in the geological sink. In the scenario where the risk tolerance is at 

the lowest, 73 % of the total capturable CO2 is stored in the geological sink. In this case, the optimal solution is 

less optimistic than in the fuzzy case but more optimistic than in the neutrosophic case. In all cases, Source 5 

contributes the highest to the stored CO2 ranging from 103 Mt to 120 Mt. Source 1 shows consistency in the 

amount of CO2 stored in all three decision environments. However, it is possible that both sources 2 and 4 may 

not be connected to the geological reservoir when the most conservative solution is chosen to be implemented. 

These insights are useful in implementing large-scale CCS networks as the risks associated with storage 

characteristics may be perceived differently from one expert to another. 

Table 2: Optimal solution for the case study under different decision environments 

Source Total CO2 captured and stored (Mt) 

 Fuzzy 

(TE=1 and TI=1) 

Intuitionistic Fuzzy 

(TE=0 and TI=1) 

Neutrosophic 

(TE=0 and TI=0) 

Source 1 37.67 35.20 35.20 

Source 2 48.00 0.00 21.60 

Source 3 19.50 11.70 11.70 

Source 4 46.80 0.00 37.44 

Source 5 120.0 103.1 115.11 

Total 271.97 150.0 221.05 

A sensitivity analysis is performed by varying the expert risk parameters and observing its effect on the total 

CO2 captured and stored of the system. Figure 2 shows the results as a heat map for different pairs of falsity 

and indeterminacy tolerance levels. Based on the results, the optimistic solution can be found at high levels of 

falsity and indeterminacy tolerance levels where the total CO2 stored ranges from 266 to 272 Mt. In most cases, 

the total CO2 captured and stored is at least 200 Mt, especially at high falsity tolerance levels. This behavior is 

due to the model choosing to utilize the storage site at its most accurate estimate to minimize the degree of 

indeterminacy at an optimal level of satisfaction. For high values of indeterminacy tolerance, the model tends to 

provide a solution where the storage characteristics are estimated at the minimum level. This behavior is due to 

the less weight given to the accuracy of the storage characteristics estimate but giving more importance to the 

risk associated with over-estimation. The sensitivity analysis performed generates valuable insights about the 

risk from different perceptions from an expert.  

  

Figure 2: Total CO2 stored at varying expert risk tolerance levels 
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5. Conclusions and future work  

A neutrosophic linear programming model has been developed for the optimal planning of CCS systems with 

storage uncertainties. The model captures the risk perception of the expert by adjusting the parameters for 

tolerance for falsity and indeterminacy. The optimal flow rate levels for each decision environment are 

determined by using the model. The model can generate insights for managing the risk associated with 

uncertainty in the characteristics of the storage sites such as capacity and injectivity. In the case study 

presented, the optimal utilization of the storage sites ranges from 49 % to 89 % of the total capturable CO2. 

Future work includes extending the model to incorporate the different availability of sources and sinks. The 

incorporation of CO2 utilization and the risks associated with its uncertainty is also subject to future work. 
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