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With the recent surge of industrialisation and advancement of technologies, supply chain management has been 

widely permeated by the practice of reverse logistics and zero-waste circular economy. Literature on these 

topics has covered several reverse logistics optimisation problems; however, the area of the vehicle routing 

problem has only been explored to a limited extent, notwithstanding the costs associated with route planning 

under bi-directional pathways. E-commerce logistics is not well-represented in previous works; and of such 

existing studies, no model has quantified the performance of the routing plan on the basis of all three 

sustainability measures. In this light, the objective of the present paper is to model the forward-reverse logistics 

network of e-commerce organisations and determine optimal routing plans based on economic, environmental, 

and social performance measures. To fulfil this, a mixed-integer linear programming problem (MILP) integrating 

the minimisation of three types of costs, namely (1) operational costs, (2) carbon emissions, and (3) highest 

energy use of vehicle drivers, was formulated and then evaluated using a hypothetical case study. The findings 

indicated that the proposed model was successful in optimising all three aspects of sustainability, with a 

weighted average deviation of a minimal 9.02 % from the potential of each objective. Under the optimal routing 

scheme, all vehicles are deployed and assigned paths such that they leverage the unique benefits of the vehicles 

in sustainable terms.  

1. Introduction 

In every supply chain, logistics plays a crucial role as it facilitates the train of activities that constitute the network. 

By ensuring the efficient flow of goods from suppliers to customers, this domain of supply chain management 

integrates various business transactions into a cohesive whole. Its significance is further highlighted as 

transportation and warehousing contribute to as much as 25 % and 8-10 % of product costs. With these, logistics 

has been a promising avenue for companies to improve operations and gain a competitive edge. As much as 

logistics processes spur economic growth, however, their environmental impacts cannot be overstated. With 

rapid industrialisation, transportation has introduced a wide range of negative externalities to the environment. 

According to the International Energy Agency (2019), one-fourth of the global emissions in 2016 can be 

attributed to transportation. Of this, freight transport contributed 42 %, which is predicted to jump to 60 % by 

2050. Along with greenhouse gas emissions, freight transport has been driving factors of air pollution, 

environmental noise, ozone degradation, and fossil fuel depletion—from which more serious issues arise, 

notably global warming and climate change. Naturally, these concerns created the concept of green logistics. 

Green logistics is the process of “greening” the different elements of logistics, such as transport, material 

handling, warehousing, distribution, packaging, and waste management. One of the strategies that have 

received considerable attention in this area is reverse logistics, which studies the movement of goods from 

customers to depots for purposes such as recycling, returns, and disposal. The environmental benefits of this 

practice are primarily realised by means of waste minimisation. It is an essential component of closed-loop 

supply chains, which propose a shift from a 'take-make-waste' linear to a zero-waste circular economy where 

materials and energy that would otherwise escape as waste after usage efficiently circulate within the system. 

Unlike typical networks, closed-loop supply chains entail the management of both forward and reverse product 

flows and present new challenges, such as uncertain forecasting, non-uniform products, and variable inventory. 
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Due to such complexities, operations research is a tool that has been extensively used in the field, with proven 

usefulness in optimising decisions. For instance, in the paper of Yu and Solvang (2018), a two-stage stochastic 

bi-objective MILP was presented to solve a network design problem for a sustainable reverse logistics system. 

Li et al. (2017), on the other hand, formulated Mixed-Integer Non-Linear Programming (MINLP) to optimise the 

solution for a location-inventory problem. 

Within the research interest of reverse logistics, a substantial number of studies have been dedicated to 

optimising routing schemes, with the topic formally termed the vehicle routing problem in reverse logistics 

(VRPRL). Of existing studies on VRPRLs, however, there is a small percentage focusing on the e-commerce 

industry despite the massive growth of online purchasing and the number of product returns associated with e-

commerce environments. Notable differences exist between e-commerce and other business models with 

regard to the VRPRL. For one, product distribution in traditional business models typically involves delivering 

products from a central warehouse to physical retail stores. In contrast, e-commerce companies deliver products 

directly to customers' homes or designated pickup locations, implying the need to deal with last-mile delivery, 

which is often more complex and expensive than traditional distribution methods. Additionally, e-commerce 

businesses often have a wider range of products and a larger customer base, further adding to the difficulty 

associated with solving the VRPRL. Most notably, e-commerce companies face unique challenges related to 

product returns and exchanges, which require additional planning and resources for reverse logistics. 

Zhang et al. (2020), one of the few studies that tackled the VRPRL in e-commerce, developed an MINLP model 

minimising the total cost of transportation and penalties due to late deliveries. Li et al. (2021) extend the work 

by incorporating customer satisfaction levels and logistics and distribution costs in a single objective function. 

Similarly, Deng et al. (2014) were able to minimise forward and backward logistics costs while maximising 

customer satisfaction. As of writing, however, no study has been able to subsequently incorporate the 

environmental impacts of transportation in similar networks. Related VRP works that consider minimizing 

transport emissions, such as that by Di Pretoro et al. (2022), exist but the models formulated operate on a single 

direction only. In hopes of moving toward a sustainable future, the objective of this study is to model the multi-

objective vehicle routing problem with delivery and pickup for the forward-reverse logistics network of e-

commerce firms. The VRPRL is to be formulated as a MILP with a view of simultaneously minimising operational 

costs, carbon emissions, and maximum driver energy use. The contribution of this research is three-fold; to the 

best of the author’s knowledge, it is the only study that simultaneously addresses: (1) routing in reverse logistics, 

(2) product returns in e-commerce, and (3) optimisation based on all sustainability pillars. 

2. Problem definition 

The multi-objective VRPRL undertaken in the study is defined as an e-commerce logistics network with a set of 

customers and one supplier depot. Each customer must be visited exactly once by a vehicle to both deliver and 

pick up a certain amount of goods to and from the location. A heterogeneous fleet of vehicles is available to 

perform these operations, each having different load capacities, carbon emission factors, fuel consumption, etc. 

Every vehicle is manned by one driver, which also varies in several characteristics. All routes begin with the 

vehicle departing from the depot carrying the total amount it intends to deliver to customers and ends with 

returning to the depot having a load equal to the total amount picked up. For each customer, there is a specific 

time window that the service can be performed and a length of time spent on the service, which includes the 

time to load and unload the goods. The total route time associated with a vehicle is the sum of travel time, 

service time, and waiting or idle time. The average speed of the vehicles is assumed constant, so travel time is 

proportional to the distance travelled. The total distance travelled by a vehicle must not exceed the set maximum. 

At each point of the trip, the load they carry must be within their respective capacities. The goal of the problem 

is to determine the optimal routing scheme simultaneously considering economic costs, carbon emissions, and 

driver workload balance, following their assigned levels of importance. 

3. Model formulation 

The MILP formulation of the problem is given as follows. Tables 1 to 3 summarise the nomenclature for the sets, 

indices, variables, and parameters used in expressing the model’s objective function and constraints. 

Table 1: Sets and their indices  

Notation Definition 

𝑁 Set of nodes (customers and depot), where 𝑖, 𝑗 ∈ 𝑁 

𝑉 Set of vehicles, where 𝑘 ∈ 𝑉 
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Table 2: Decision and system variables 

Notation Definition 

𝑥𝑖𝑗𝑘 1 if arc (𝑖, 𝑗) belongs to the route travelled by vehicle 𝑘; 0 otherwise 

𝑢𝑖𝑗 Demand picked up from customers up to node 𝑖 and transported in arc (𝑖, 𝑗) 

𝑣𝑖𝑗 Demand to be delivered to customers routed after node 𝑖 and transported in arc (𝑖, 𝑗) 

𝑠𝑖𝑘 Time that vehicle 𝑘 starts serving customer 𝑖 

𝑙𝑘 Time that vehicle 𝑘 finishes all services 

𝑒𝑖𝑘
𝑙  Amount of energy the driver operating vehicle 𝑘 spends for lifting products at node 𝑖 

𝑒𝑘
𝑑 Amount of energy the driver operating vehicle 𝑘 spends on driving 

𝐸𝑘 Total energy consumption of the driver operating vehicle 𝑘  

Table 3: Parameters 

Notation Definition Notation Definition 

𝑑𝑖𝑗  Distance between nodes 𝑖 and 𝑗 ℎ1 Starting height when lifting cargo 

𝑡𝑖 Service time at customer 𝑖 ℎ2 Ending height when lifting cargo 

𝑡𝑖𝑗 Travel time between nodes 𝑖 and 𝑗 𝛽 Unit of energy spent 

𝐷𝐷𝑖 Delivery demand of customer 𝑖 𝐵𝑊𝑘 Body weight of driver at vehicle 𝑘 

𝑃𝐷𝑖 Pick-up demand of customer 𝑖 𝑐𝑘
𝑣 Hourly cost of vehicle 𝑘 use 

𝜌 Density of the product being delivered 𝑐𝑑  Hourly wage of a driver  

𝐸𝑖 Earliest time a vehicle can visit customer 𝑖 𝑐𝑓 Cost of fuel per Litre 

𝐿𝑖 Latest time a vehicle can visit customer 𝑖 𝑅𝑘 Fuel consumption rate of vehicle 

𝑘 

𝐶𝐶𝐹𝑘 Carbon emission factor for vehicle 𝑘 𝑄𝑘 Weight capacity of vehicle 𝑘 

𝐸𝐶𝑘 Daily energy capacity of driver at vehicle 𝑘 𝑉𝑘 Volume capacity of vehicle 𝑘 

𝑀𝐷 Total maximum distance that a vehicle can travel 𝑤1 Weight of economic objective  

𝑎𝑘 Parameters related to the gender of the driver at vehicle 𝑘 𝑤2 Weight of environmental objective  

𝑏𝑘 Parameters related to the gender of the driver at vehicle 𝑘 𝑤3 Weight of social objective  

3.1 Objective function 

The model’s objective function, as written in Eq(1), is equivalent to the weighted gap of the solution’s economic, 

environmental, and social costs with the optimal cost if each objective were to be minimised in a single-objective 

model. It represents the potential for improvement of the multi-objective model’s performance relative to the 

case where the objectives operate independently. In effect, the function seeks to maximise the fulfillment of the 

three sustainability goals without compromising one for the other. The weights convey the relative importance 

of each component to the system’s overall performance, and they are subjectively determined by the model’s 

decision-maker. 

Minimize 

𝑍 = 𝑤1
𝐹𝑒𝑐𝑜−𝐹𝑒𝑐𝑜𝑏𝑒𝑠𝑡

𝐹𝑒𝑐𝑜𝑏𝑒𝑠𝑡 
+ 𝑤2

𝐹𝑒𝑛𝑣−𝐹𝑒𝑛𝑣𝑏𝑒𝑠𝑡

𝐹𝑒𝑛𝑣𝑏𝑒𝑠𝑡  
+ 𝑤3

𝐹𝑠𝑜𝑐−𝐹𝑠𝑜𝑐𝑏𝑒𝑠𝑡

𝐹𝑠𝑜𝑐𝑏𝑒𝑠𝑡  
  (1) 

Shown in Eq(2), the cost associated with the economic objective consists of three elements: (1) driver wage (2) 

vehicle use, and (3) fuel consumption. In this calculation, it is assumed that drivers are paid from the beginning 

of the period, regardless of the time they begin actual travel or service, up to the time they arrive back at the 

depot; as a result, daily wage also accounts for inter-service idle times. Costs for vehicle use and fuel 

consumption, on the other hand, only consider the total travel time. Environmental sustainability is captured in 

Eq(3) using the total amount of carbon emissions, which is calculated using the respective carbon emission 

factor of each vehicle. Meanwhile, social cost is measured by taking the worst percentage energy expenditure 

among all drivers adopting the established ergonomics-based approach of Pilati and Tronconi (2022) in order 

to obtain a single fairness indicator that can be easily incorporated into the objective function. Note that Eq(4) 

can be linearized by equating 𝐹𝑠𝑜𝑐 to an auxiliary variable constrained to be greater than each 𝐸𝑘.  

𝐹𝑒𝑐𝑜 = ∑ 𝑐𝑑𝑙𝑘𝑘 + ∑ ∑ ∑ (𝑐𝑘
𝑣𝑡𝑖𝑗 + 𝑅𝑘𝑐𝑓𝑑𝑖𝑗)𝑥𝑗𝑖𝑘𝑘𝑗𝑖   (2) 

𝐹𝑒𝑛𝑣 = ∑ ∑ ∑ 𝐶𝐶𝐹𝑘𝑑𝑖𝑗𝑥𝑖𝑗𝑘𝑘𝑗𝑖   (3) 

𝐹𝑠𝑜𝑐 = max{𝐸1,𝐸2, … 𝐸|𝐾|}  (4) 
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3.2 Constraints 

The standard VRP-SPDTW constraints are detailed in the set of equations below. Eq(5) limits the number of 

vehicles visiting each customer to exactly one. The flow balance constraint, which ensures that a vehicle 

entering a node also departs from it, is expressed in Eq(6). Eq(7) restricts the number of trips taken by each 

vehicle to one. Eq(8) and Eq(9) define the demand flow equations for pick-up and delivery operations. The load 

capacity constraints, stating that each vehicle cannot carry goods weighing over its capacity in terms of weight 

and volume, are enforced in Eq(10) and Eq(11). Eq(12) and Eq(13) establish the time window requirements of 

each customer. Eq(14) guarantees no route involves travelling over the maximum allowable distance. Lastly, 

Eq(15) and Eq(16) describe the nature of the decision variables as taking binary or non-negative values. 

The following set of equations presents additional constraints that support the definition of the objective function 

components. Eq(17) determines the time each vehicle returns to the depot after serving all assigned customers, 

which is necessary in calculating the driver’s wage under the economic objective. Similarly, the maximum 

function can be linearized by using an auxiliary variable assigned to be greater than each 𝑠𝑖𝑘 value. Eq(18) to 

Eq(20) pertain to computations related to the social cost. In these constraints, it is supposed that all drivers have 

a daily energy capacity, which varies according to their gender. Eq(18) calculates the amount of energy drivers 

spend on lifting activities per customer served, which is a function of several parameters, including their body 

weight, amount of load, and lifting heights, based on the method proposed by Iqbal et al. (2014). On the other 

hand, Eq(19) denotes the energy expenditure for driving activities, which depends on body weight and the unit 

of energy spent 𝛽  per time-mass. To sum up the two sources of workload and compare the total energy 

consumption to each driver’s energy capacity, Eq(20) is established. The lifting component was multiplied by a 

factor of 4 as drivers lift each order four times for each arc, twice at the initial point and twice at the destination. 

𝑙𝑘 = 𝑚𝑎𝑥{𝑠1𝑘,𝑠2𝑘 , … 𝑠|𝑁|𝑘} + ∑ 𝑥𝑖0𝑘𝑡𝑖0𝑖   (17) 

𝑒𝑗𝑘
𝑙 = 0.01 ∑ (𝑥𝑖𝑗𝑘(𝑎𝑘 + 0.4𝐵𝑊𝑘(0.76 − ℎ1) + 𝑏𝑘(𝐷𝐷𝑖 + 𝑃𝐷𝑖)(ℎ2 − ℎ1)))𝑖       ∀   𝑗, 𝑘   (18) 

𝑒𝑘
𝑑 = 𝛽 ∙ 𝐵𝑊𝑘 ∑ ∑ 𝑡𝑖𝑗𝑥𝑖𝑗𝑘𝑗𝑖      ∀   𝑘   (19) 

𝐸𝑘 =
𝑒𝑘

𝑑+4 ∑ 𝑒𝑖𝑘
𝑙

𝑖

𝐸𝐶𝑘
     ∀   𝑘   (20) 

4. Illustrative case study 

To validate the formulated model, a hypothetical case approximating real-world conditions was studied. The 

transportation network of this case includes eight customers, one depot, and three motorcycle vehicles. The 

estimation of realistic parameters was performed by patterning the values after those in previous similar VRP 

studies. To clearly observe how the model handles real-life complexities and conflicts in priorities, the 

parameters were structured such that the decision-making process does not yield straightforward results. 

The MILP was coded using the General Algebraic Modeling System (GAMS) and solved through the CPLEX 

solver on a Macbook Pro 2020 with an Apple M1 chip and 8 GB RAM. The base program resulted in an optimal 

solution with an execution time of 12.756 s. The results were analyzed under four scenarios, the first three being 

the minimization of the economic, environmental, and social costs individually, and the last being the multi-

objective model considering all three. Note that it was necessary to run the single-objective variants of the model 

prior to the complete version to determine the lowest possible cost for each of the three sub-objectives. In the 

multi-objective model, the economic, environmental, and social goals were assigned importance weights of 0.50, 

0.25, and 0.25. A summary of the resulting optimal delivery and pick-up routes is given in Figure 1 with a 

comparison of their associated costs and efficiency levels in Table 4. For the multi-objective model, the optimal 

solution deviates from the potential values by a weighted average of 9.02 %. Overall, the results clearly illustrate 

∑ ∑ 𝑥𝑖𝑗𝑘𝑘𝑖 = 1      ∀    𝑗 ≠ 0   (5) 
𝑢𝑖𝑗+𝑣𝑖𝑗

𝜌
≤ ∑ 𝑉𝑘𝑥𝑖𝑗𝑘𝑘       ∀    𝑖, 𝑗   (11) 

∑ 𝑥𝑖𝑗𝑘𝑖 − ∑ 𝑥𝑗𝑖𝑘𝑖 = 0      ∀    𝑗, 𝑘  (6) 𝑠𝑖𝑘 + 𝑡𝑖 + 𝑡𝑖𝑗 − 𝑀(1 − 𝑥𝑖𝑗𝑘) ≤ 𝑠𝑗𝑘       ∀   𝑖 , ∀  𝑗 ≠ 0   (12) 

∑ 𝑥0𝑗𝑘𝑗 ≤ 1      ∀    𝑘   (7) 𝐸𝑖 ≤ 𝑠𝑖𝑘 ≤ 𝐿𝑖       ∀   𝑖, 𝑘   (13) 

∑ 𝑢𝑗𝑖𝑖 − ∑ 𝑢𝑖𝑗𝑖 = 𝑃𝐷𝑗       ∀    𝑗 ≠ 0   (8) ∑ ∑ 𝑑𝑖𝑗𝑥𝑖𝑗𝑘𝑗𝑖 ≤ 𝑀𝐷      ∀   𝑘   (14) 

∑ 𝑣𝑖𝑗𝑖 − ∑ 𝑣𝑗𝑖𝑖 = 𝐷𝐷𝑗       ∀    𝑗 ≠ 0   (9) 𝑥𝑖𝑗𝑘 ∈ {0,1}     ∀   𝑖, 𝑗, 𝑘  (15) 

𝑢𝑖𝑗 + 𝑣𝑖𝑗 ≤ ∑ 𝑄𝑘𝑥𝑖𝑗𝑘𝑘       ∀    𝑖, 𝑗   (10) 𝑢𝑖𝑗 ≥ 0, 𝑣𝑖𝑗 ≥ 0, 𝑠𝑖𝑗 ≥ 0     ∀   𝑖, 𝑗, 𝑘  (16) 
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how the recommended routing scheme varies depending on the priority of the decision-maker and how the 

model effectively manages conflicting sustainability goals. 

Table 4: Objective function values 

 Potential 
Minimizing 

Cost 

Minimizing 

Emissions 

Minimizing Highest 

Energy Use 
Multi-Objective 

   Eff.  Eff.  Eff.  Eff. 

Cost, $ 647.38 647.38 1.00 783.39 0.79 843.77 0.70 726.19 0.88 

Emissions, kg CO2 77.90 112.00 0.56 77.90 1.00 83.00 0.93 77.90 1.00 

Highest Energy Use, % 12.04 19.75 0.36 13.45 0.88 12.04 1.00 13.45 0.88 

 

    

a) Multi-objective  
  

      

b) Minimizing cost c) Minimizing carbon emissions d) Minimizing highest energy use 

Figure 1: Optimal delivery and pick-up routing schemes (not drawn-to-scale) 

Under the cost minimization model, the utilization of vehicle B was maximized with it serving more than half of 

the customers. This is an expected result given that the vehicle is associated with the lowest hourly cost among 

all vehicles and the highest load capacity. In real-life situations, vehicle B represents large vehicles that allow a 

lower number of trips needed to serve customers and lower transportation costs, but at the same time, are fuel-

inefficient and emit more pollutants, leading to an increased environmental impact. However, since the objective 

function for this scheme had no regard for the effects of transportation on the environment, then the vehicle was 

used to its maximum capacity without significant constraint. This is evident in Table 4, which shows that the cost 

minimization model results in only a 56 % efficiency in terms of carbon emissions. Because there was also no 

consideration for social sustainability, the model did not penalize energy use imbalances at the expense of the 

driver at vehicle B, pulling down the social cost efficiency to 36 %. 

A different vehicle routing plan is obtained when the environmental objective is prioritized, as shown in Figure 

1c. Under this arrangement, all vehicles are deployed, including vehicle C, which has the lowest load capacity 

and highest hourly rate, but is associated with the lowest carbon emission factor. In contrast to vehicle B, vehicle 

C corresponds to small vehicles that are fuel-efficient and significantly emit less carbon. As such, the usage of 

which was beneficial to the environment-oriented model. As a consequence, however, cost increased from 

$ 647.38 to $ 783.39, which can be attributed to the high variable cost of using vehicle C and the fact that vehicle 

C’s capacity necessitates longer travels to serve customers. Nevertheless, social cost improved considerably 

relative to the first model given that the driver operating vehicle B is freed up some load by the new vehicle. 

The model minimizing the highest energy use among drivers yields similar results to the model concerned with 

environmental sustainability, indicating that the environmental and social goals are not markedly incompatible. 
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Most of the differences can be attributed to changes in the customers served by the vehicles such that some 

workload of the driver at vehicle C, in the form of energy consumed for driving activities, is transferred to that 

for vehicle A, resulting in a more level work distribution. Specifically, this entailed switching from customer 2 to 

customer 6, which given the differences in distances, led to a reduction in driving time by approximately 1 h. 

When the three objectives are considered in the routing decision, the model suggests a scheme that involves 

the use of all vehicles. In terms of carbon emissions, the solution performs at maximum efficiency, and at 88 % 

for the economic and social aspects. The way in which the model manages to balance competing goals becomes 

apparent when examining how the plan shifts from the models that focus on a single objective. For one, it is 

shown from a comparison between Figures 1a and 1c that the order by which vehicle B was made to serve the 

customers was reversed, the purpose of which being to reduce idle times, allowing the driver to finish their 

service 3 h earlier and reducing wages that have to be paid. As a result, the model focusing on environmental 

costs marginally improved, in fact, without changes in the total amount of carbon emissions since the only 

change involved was the sequence of nodes to visit. On the other hand, the shift was significant from the cost 

minimization to the multi-objective model, indicating that there is a high tendency for economic goals to have 

adverse environmental and ethical impacts. 

5. Conclusions 

Given the accelerating amount of product returns in online businesses and the recognition of corporate 

sustainability, there is a need to devise effective strategies for managing logistics operations in a sustainable 

manner. To this end, the present study proposes a multi-objective optimization model addressing the VRPRL 

based on the tripartite description of sustainable development. The problem was formulated as an MILP model 

incorporating several real-life conditions, including simultaneous delivery and pick-up operations, capacitated 

vehicles, and time windows. The proposed model optimizes three goals: economic efficiency, environmental 

impact, and social equity. To evaluate its performance, a numerical analysis was carried out on one set of 

benchmark instance. The results demonstrated that the proposed model can effectively optimize the three 

sustainability dimensions, deviating from the potential of each objective by only an average of 9.02 %. It was 

found that using fewer vehicles, with priority on low-cost and fuel-inefficient transportation was the tendency of 

decisions if economic goals were prioritized; the opposite applies when the other goals are the primary concern, 

highlighting the importance of dealing with competing sustainability objectives. Overall, this study represents a 

significant step forward in addressing the e-commerce VRPRL in a sustainable and cost-effective manner. For 

future studies, additional factors, such as traffic congestion, weather conditions, and customer preferences, 

which can significantly impact the sustainability and efficiency of logistics operations may be considered. 
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