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Sustainable production planning can be achieved by including several key factors along with production which 

affect the environment and economy. In the current competitive market scenario, it is highly essential to 

emphasize several objectives simultaneously. Planning for sustainable manufacturing must take crucial issues 

like carbon emissions, energy use, and production cost minimization into account. The methodology for creating 

a practical design space for manufacturing with capped carbon emissions, energy use, and production prices is 

proposed in this study. Data-driven machine learning approaches are implemented to classify feasible data 

points from the data set to create design space and a model which predicts feasible and not feasible data points. 

Algebraic equations are constructed using support vectors. Using the equation, whether the selected process 

path satisfies all of the established criteria can be determined. To demonstrate the practical applicability and 

goal of the suggested techniques, an example is provided. The models have achieved an accuracy of 90 % 

using SVM and 100 % accuracy using Random Forest. 

1. Introduction 

Production planning is very essential to satisfy demand and achieve sustainable development. In the current 

competitive market scenario, it is highly essential to emphasise several objectives simultaneously. The majority 

of works of literature are concerned with maximising profit, minimising production and distribution costs, 

minimising delivery times, and so on. Three crucial aspects that must be taken into consideration in order to 

achieve sustainable development are energy usage, production costs, and carbon emissions. The goal of 

several objectives may also be imprecisely defined, which makes it difficult for the planner to define the definite 

goals clearly. This occurs when the goal comprises linguistic variables (like approximately equal to, essentially 

greater than, etc.), and the deterministic values of goals cannot be determined. 

In recent years, various research studies have explored the use of machine learning algorithms in the context 

of production planning. In their paper Multi-Objective Optimisation for sustainable production planning, Kumawat 

et al. (2021) proposed a fuzzy approach for production planning that considers multiple process options, which 

addresses decision-making uncertainty in situations where there is flexibility in the problem at hand. In the paper 

(Badhotiya et al., 2019), Santander et al. (2023) Approach to Improving Production Planning, a Bayesian 

framework is implemented on an industrially relevant fluid catalytic cracking process model and compared to 

the production planning process traditionally followed in the refining industry. The resulting production planning 

structure has robust performance due to considering uncertainty in model predictions. A study by Riazi et al.  

(2023) proposes a new feature selection method based on Support Vector Machine (SVM) technique that 

considers multiple environmental parameters such as waste, pollution, and energy. The aim is to predict 

sustainable productions with high demand and minimal environmental impact. Results show that the proposed 

hybrid method outperforms other similar methods in accuracy, enabling smart decisions for sustainable 

production. Mula et al. (2006) research emphasises the significance of taking uncertainty into account in 

production planning, as models that do so can result in less-than-optimal choices. It analyses the body of 

research on production planning in the face of uncertainty and offers a system of classification for these models. 

According to emission restrictions, a producer can choose between using conventional or green technology to 

make a single product, according to Hong et al. (2016). Analysis of the issue is done using cap-and-trade and 
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obligatory emission-cap approaches. To improve the models, a dynamic programming approach is devised. 

Findings indicate that combining different technologies is only advantageous when emission caps are legally 

obligatory.  

Overall the use of many machine learning techniques, such as the SVM kernel, has shown great promise in 

production planning. These techniques have the potential to significantly improve the efficiency of manufacturing 

industries by identifying the optimal production plan based on available data and minimising production costs. 

In this paper, the use of SVM, along with random forest classification, in the context of production planning. 

These experimental results demonstrate the effectiveness of these techniques for production planning problems 

and highlight their potential for improving manufacturing efficiency. 

2. Problem Statement 

Given a set of historical/simulated data with varying target loads of production plants operating using different 

process routes. Each targeted load will have its respective energy consumption, production cost, and emission 

information for carbon gas as a by-product. The energy consumption, production cost, and emission vary with 

different load conditions. 

This paper aims to project the feasible region and create a model to predict the feasible routes of production 

satisfying the capped limits of energy consumption, production cost, and emissions of gases onto the space of 

production targets. Additionally, to generate an algebraic equation to attain objective-based optimisation in the 

feasible region. 

3. Methodology 

The methodology presented to solve the defined problem is elucidated in two sections. In Section 3.1 the basic 

mathematics linked with the SVM algorithm, which required a classify the data. In  Section 3.2 the basic concept 

of working with a random forest classifier is explained. 

3.1 Support Vector Machine (SVM) 

SVM is a type of machine learning algorithm that is capable of performing various tasks such as classification, 

regression, and outlier detection in high-dimensional space. It achieves this by constructing a hyperplane or 

multiple hyperplanes that are farthest away from the nearest data points of each class. This leads to a clear 

separation between the classes, and the size of the margin between the hyperplanes is inversely proportional 

to the generalisation error of the classifier. In simpler terms, SVM creates a boundary between different classes 

of data by finding the most optimal hyperplane(s) with the maximum distance from the nearest data points of 

each class resulting in a high-accuracy classification. 

Given a set of training vectors xi ∈ ℝp i = 1,2….k in two classes, and an output vector O ∈ {-1,1}k, the goal is to 

find w ∈ ℝ and b ∈ ℝ as a result of which the prediction made by sign(wTɸ(x)+b) is correct for the vast majority 

of samples. Support Vector Classification (SVC) solves the following primal problem: 

𝑚𝑖𝑛𝑤,𝑏,𝜀
1

2
𝑤𝑇𝑤 + 𝐶 ∑ 𝜀𝑖

𝑘
𝑖=1 ; s.t. (1) 

Oi (wTɸ(x)  +  b)  ≥  1 –  𝜀i   (2) 

𝜀i ≥  0, ∀i  (3) 

Intuitively, the goal is to maximise the margin (by minimising ||w ||2=wTw). Also, when a sample is misclassified 

or falls within the margin border, a penalty is incurred. Ideally, the equation 𝑂𝑖 (wTɸ(x)+b) ≥1 would be true for 

all data, which indicates a perfect prediction because the issues aren’t always fully separable with a hyperplane. 

Some samples are permitted to be separated from their proper margin boundary ‘Ԑ𝑖 ’. The penalty term C works 

as an inverse regularisation parameter, controlling the strength of the penalty. The dual of the primal problem 

𝑚𝑖𝑛𝛿
1

2
𝛿𝑇𝑄𝛿 − 𝑒𝑇𝛿; 𝑠. 𝑡.  (4) 

𝑂T𝛿 = 0 (5) 

0 ≤ 𝛿i≤ 𝐶, ∀𝑖 (6) 

where ‘e’ is an all-ones vector and ‘Q’ is a (k×k) positive semidefinite matrix 𝑄𝑢𝑣 = 𝑧𝑢𝑧𝑣𝐾(𝑥𝑢,𝑥𝑣), where 𝐾(𝑥v,𝑥𝑣) 

= ɸ(𝑥𝑢 )𝑇ɸ(𝑥𝑣 ) is the kernel. The terms 𝛿𝑖 are called the dual coefficients, and they are upper bounded by ‘C’. 

This dual representation highlights that the training vectors are implicitly transferred into a higher dimensional 
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space by the function is highlighted by this dual representation ′ɸ′. Commonly used kernel functions are the 

polynomial kernel, radial basis function (RBF) kernel with bandwidth, and sigmoid kernel. The output of the 

decision function for a given sample ‘x’ becomes as follows and the predicted class corresponds to its sign. 

∑ 𝑧𝑢𝛿𝑖𝐾(𝑥𝑢, 𝑥) + 𝑏

𝑢∈𝑆𝑉

 (7) 

It should be noted that the sum of the support vectors will consist of the samples that lie within the margin 

because the dual coefficients are zero for the other samples. 

3.2 Random Forest Classifiers (RFC) 

Random forest classifiers fall under the category of ensemble algorithms. Ensemble Technique is a technique 

that integrates several learning algorithms to produce the best predictive performance. Random Forest is a well-

known algorithm to train early in the model development process, to see how the model performs and is very 

simple to build. In addition to simplicity, it provides a fairly sensible indicator of the importance it assigns to the 

options. Random forests function by constructing a multitude of decision trees at training time and giving the 

class that is either the mean prediction (regression) of the individual trees or mode of the categories 

(classification) as output. The random forest algorithm works in the following way: 

Step 1: Starts by selecting arbitrary samples from the dataset. 

Step 2: Then, decision trees are produced for the selected samples, and each decision tree provides us with a 

prediction result. 

Step 3: Next, voting is carried out among the predicted results. 

Step 4: At last, the outcome with the majority of votes is chosen as the final prediction.  

The benefit of Random Forest is that it is among the most accurate classifiers. It is robust since several decision 

trees are involved in the process and overcome the problem of overfitting as the average of all the predictions 

is taken. It also handles values that are missing. Plus, the time required for computation is less since they use 

both structured and unstructured data. On the other hand, other techniques solely use structured data, so they 

need to keep their entire dataset as a training data set and use complicated methods for determination, leading 

to increased time usage. Some things that should be in mind so that Random Forest Classifiers give more 

accurate predictions are that features in the dataset should have enough predictive power. If the features aren’t 

so strong, then the predictions would suffer. Secondly, the trees that form the forest and their resulting 

predictions should have low correlations with each other. This would enable all the trees to protect each other 

from their respective errors. If they are somehow highly correlated, then the trees may give errors in the same 

direction. 

4. Illustrative example 

In this section, the proposed methodology is demonstrated via an illustrative example. For example, the 

production planning for the Iron Steel industry is carried out via three available options, which are process routes 

in the industry. The current production scenario utilises existing process routes with fixed production limits. The 

example is solved using Python (version 3.11.3) on the computer having configuration: Intel(R) Core (TM) i5 (3 

GHz) and 8 GB RAM. 

4.1 Production planning of the iron and steel industry 

In 2018, the IS sector of India was the second-largest in the world after China. India leads the production of 

sponge iron or Direct Reduced Iron (DRI) globally, along with being the third-largest finished steel consumer in 

the world after China and the USA. The coal-based route accounted for 79 % of total sponge iron production, 

which was 30.51 Mt in 2017–2018. There are mainly four classifications of steel production routes which are 

based on process routes in IS industry: (a) blast furnace/basic oxygen furnace (BF/BOF); (b) coal-based DRI-

Electric Arc Furnace (Coal-based DRI-EAF); (c) gas-based DRI-EAF, and (d) scrap-EAF routes. In this case 

study, production planning through Blast Furnace/Basic Oxygen Furnace (BF/BOF), Coal-based DRI-Electric 

Arc Furnace (Coal-based DRI-EAF), and Scrap-EAF routes is considered. The assumption of the overall 

demand for crude steel is taken as 350 Mt.  

A set of historical data could be useful and more accurate. However, for this study, simulated data is used to 

train the classification models. Simulated data comprises combinations of the loads that are to be produced 

using three different process routes to satisfy the overall demand for crude steel, and their respective carbon 

emissions, production cost, and energy consumption are calculated using equations from Table 1. 
In Table 1, x is the t of the product produced using that process. The production cost, energy consumed, and 

carbon emission through a process route can be affected by many factors. So it need not be linear for this case 
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study; the above equations are assumed. A data set of 150 random production combinations is generated and 

divided into two categories: feasible (1) if the characteristics are below the capped value for the selected 

combination output target, otherwise not infeasible (-1). The criteria for classification are that the total production 

cost is 800 billion dollars, energy consumption is 19,000 GJ, and carbon emission is 8,000 t. 

4.2 SVM classifier 

The data presented above is utilised to train SVC to classify the data based on feasibility and forecast a viable 

region in the production space. Figure 2 depicts SVC's performance in estimating the viable region for crude 

steel manufacturing. A plane is produced in Figure 2(a) using a linear kernel that divides the feasible and non-

feasible data points. The RBF kernel is used to build a plane in Figure 2(b). Table 2 summarizes the model's 

prediction result for an extra 100 points. 

 
 (a) (b) 

Figure 1: SVM using (a) Linear Kernel and (b) RBF Kernel 

The mathematical equation of the plan generated by the linear kernel will be as ax + by + cz + d=0, which is a 

very simple equation that can be used to solve the problem. 

 

Figure 2: Decision tree of Random Forest Classifiers 
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4.3 Random Forest 

To increase the accuracy of the prediction of feasible routes, a random forest classifier is implemented using 47 

decision trees, which results in 100 % accuracy without overfitting. Figure 3 depicts the decision tree used for 

classifying whether a process route is feasible or not. Table 3 summarises the prediction result of an additional 

100 points generated by the model. Precision can be seen as a measure of a classifier’s exactness; recall is a 

measure of the classifier’s completeness. The F1 score is a weighted harmonic mean of precision and recall 

such that the best score is 1.0 and the worst is 0. Support is the number of actual occurrences of the class in 

the specified dataset. 

4.4 Tables 

Table 1: Equations used for calculations 

 Production cost ($) Energy consumption          Carbon emission (CO2) 

Blast Furnace/Basic 29.275x³-7115.8x²+ 0.0005x3-0.1228x2+  (5e-05)x³+0.0112x²+ 

Oxygen Furnace 

(BF/BOF)(N1) 

Coal-based DRI-Electric 

Arc Furnace (Coal- 

based DRI-EAF)(N2) 

475202x+(5e+07) 

 

97.206x³-17076x2+ 

570426x+(1e+08) 

 

8.2037x+855.48 

 

0.0021x3-0.3603x2+ 

12.036x+2133.5 

 0.7458x+77.771 

 

0.0002x³-0.0315x2+ 

1.0532x+ 186.68 

 

Scrap-EAF(N3) 44.24x3+8558.1x2- 

380578x+(4e+07) 

0.0016x3+0.3032x2- 

13.482x + 1250 

 0.0014x3+0.2695x2- 

11.984x+1111.1 

Table 2: Results of SVM 

  Precision Recall F1-score Support 

Feasible (1)  0.90 0.90 0.90 20 

Not Feasible (-1) 

Accuracy 

Macro average 

Weighted average 

 0.80 

 

0.85 

0.87 

0.80 

 

0.85 

0.87 

0.80 

0.87 

0.85 

0.87 

10 

30 

30 

30 

Table 3: Results of Random Forest Classifiers 

 Precision Recall F1-score Support 

Feasible (1) 0.87 1.00 0.93 20 

Not Feasible (-1) 

Accuracy 

Macro average 

Weighted average 

1.00 

 

0.93 

0.91 

0.70 

 

0.85 

0.90 

0.82 

0.90 

0.88 

0.89 

10 

30 

30 

30 

5. Conclusion 

This article offers a framework for production planning using a variety of process alternatives. The SVM model, 

which gives us a straightforward plane equation to solve, is used to address decision-making uncertainty in crisp 

problems. This is followed by the creation of a random forest classification model. An illustration of the 

aforementioned process is provided by the manufacture of crude steel. It was found that by altering a 

deterministic plan, it is possible to find a balance between carbon emission, energy consumption, and 

manufacturing cost. This paper demonstrates the approach's practical usefulness, and the suggested model 

outperforms the currently available remedy. Further research in this area can examine the viability of additional 

industry goals and incorporate more membership functions. 
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