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Agri-food wastes are annually generated in huge amounts along the whole supply chain and are distinguished 

for their high moisture content, biological instability, organic load, and potential environmental impact, 

contributing to climate changes. For these reasons, agri-food waste reuse and recycle are highlighted by EU 

within a broader biorefinery concept. In this context, spent coffee grounds (SCGs) represent a promising source 

of high-added value compounds due to their appreciable amounts of polyphenols, caffeine, and lipids, which 

can be recovered to find applications in several industrial fields. Nevertheless, the unit operation of solid-liquid 

extraction, can be carried out by several alternative methods and solvents under different operating conditions. 

Green extraction processes can be seen as an alternative to conventional solvent extraction, but may entail new 

threats that require further investigation, since the equivalence between green and safer must not be taken for 

granted. Each option inevitably comprises several hazards, including fire and explosion to be “aprioristically” 

considered at the initial design stages. This work focuses on the implementation of specific inherent safety 

indexes to compare SCGs treatments alternatives for designing intrinsically safer plants and contributing to a 

more aware transition to green processes.  

1. Introduction 

During the last decade, many efforts have been expended to counteract improper disposal of waste, which is 

related to remarkable environmental pollution. Thus, policies and legislations have become more restrictive in 

terms of their handling and end-of-life procedures, including agri-food by-products. According to the Food Waste 

Hierarchy (FWH) framework, the best recommended practice is to prevent waste generation, in favour of reuse 

and recycle, up to the production of energy in a biorefinery layout (Nayak & Bhushan, 2019) and within the 

broader context of energy transition. Together with climate change, the last one implies challenges for new 

technologies and processes entailing new process and personal hazards, with much effort spent into renewal 

but limited safety analyses (Pasman et al., 2023). Within this broad context, spent coffee grounds (SCGs) are 

a potential source of chemicals and energy, but commonly disposed in landfill as solid wastes, incinerated, or 

used as fertilizers. Due to their large amount of compounds they still contain, such as caffeine, tannins, and 

polyphenols, their disposal can exert a negative effect on the environment, which can be reduced through their 

conversion into high-added value compounds. On the other hand, the same compounds can be recovered and 

employed for different purposes, including the production of active food packaging and biopolymers (Pettinato, 

2021). Several methods can be exploited for this purpose, including both the traditional solid-liquid extraction 

(SLE) and the non-conventional techniques, the last providing higher extraction yields with lower energy 

demand, reduced volumes of equipment, and higher extract quality, like high pressure and temperature 

extraction (HPTE), microwave-assisted extraction (MAE), and ultrasound-assisted extraction (UAE). The 

different process alternatives can involve the use of organic solvents under mild operating conditions, or 

environmental-friendly solvents, but entailing different hazards due to stricter operational states (Frosi et al., 

2021). Each treatment alternative inevitably comprises several hazards, including fire and explosion (F&E), that 

should be taken into account at the process design stage. A safe process relies on a four-layer strategy, 

including procedural, active, passive, and inherently safe design. The minimization of process risk can be 

attained by modifying and identifying the best materials, operative conditions, and equipment, rather than 
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placing additional and expensive safety measures and devices (Fabiano et al., 2019). Seveso II and III directives 

implementation in different Countries (Laurent et al., 2021) explicitly consider inherent safety (IS) design as the 

best approach to avoid accidents, by stating that “hazards should be possibly avoided or reduced at source 

through the application of inherently safe practices” (Athar et al., 2019). The application in the early design 

stages of the guidewords “intensification”, “substitution”, “attenuation”, “simplification” offers more flexibility, both 

from a decision making and economic point of view, even if some difficulties arise from little information available 

(Park et al., 2020). The advantages and disadvantages of any alternative should be compared for each case, 

as a function of the involved process, materials, and equipment by the implementation of new and reproducible 

IS methods (Heikkilä, 1999). An aprioristic approach based on targeted risk indexes (e.g., Dow F&E Indexes) 

allows for a quantitative comparison of different conceptual design solutions that embed the process and risk 

analysis, including easiness of calculation, ranking capability according to different features of the investigated 

process, and generalizability (Bassani et al., 2022). This preliminary work focuses on the development of safety 

indexes applied to the design of extraction processes of antioxidant and lipidic compounds from SCGs. The 

safest alternatives were individuated accounting for chemicals, operating conditions, and equipment. Special 

attention was paid to the F&E hazards of the investigated systems, as well as those associated with the toxicity 

levels and conditions potentially harmful for human health.  

2. Theoretical 

In this study, an inherent safety (IS) approach was applied to the selection of the extraction method to be applied 

for the recovery of antioxidant compounds and lipids from SCGs. The inherent safety of the selected process 

routes was evaluated by applying the inherent safety index (ISI) methodology (Heikkilä, 1999), ad-hoc properly 

modified and expanded. According to a cautious assumption, the index was evaluated in the most severe 

conditions. Ad-hoc indexes were developed to account for the different hazards connected with the application 

of SLE, MAE, UAE, and HPTE. Data collected by preliminary experimental runs were used to establish the 

technical feasibility and to compare chemical and process hazards. The overall inherent safety index (ITI) was 

evaluated basing on two subindexes, i.e., the chemical safety index (ICI) and the process safety index (IPI), as 

reported in Eq(1). 

𝐼𝑇𝐼 =  𝐼𝐶𝐼 + 𝐼𝑃𝐼                                                                                                                                                       (1)                                 

ICI is associated to chemical hazards triggered by the intrinsic properties of the solvent, representing one of the 

main actors of the extraction process (Eq(2)).  

𝐼𝐶𝐼 =  𝐼𝐹𝐿,𝑚𝑎𝑥 + 𝐼𝐸𝑋,𝑚𝑎𝑥 + 𝐼𝑇𝑂𝑋,𝑚𝑎𝑥 + 𝐼𝐶𝑂𝑅,𝑚𝑎𝑥                                                                                                       (2)                                 

ICI was defined as the summary of the contributions of flammability, explosiveness, toxicity, and corrosiveness 

of chemicals. The flashpoints, the lower and upper explosivity limits (LEL and UEL), the toxicity levels, and the 

corrosiveness attitude of each solvent involved in the process were used to give a relative score to IFL,max, IEX,max, 

ITOX,max, and ICOR,max, respectively. Flashpoints of pure compounds were obtained from OSHA (Occupational 

Safety and Health Administration, 2023), while those for hydroalcoholic mixtures were evaluated by the empirical  

𝐹𝑃 = 40.2 − 86.1𝑥 + 122𝑥2 − 63𝑥3                                                                                                                     (3) 

where FP (°C) is the ethanol-water mixture flashpoint and x is the molar fraction of ethanol. 

LEL and UEL at atmospheric conditions for pure compounds were collected from OSHA (Occupational Safety 

and Health Administration, 2023). The method reported by Zabetakis (1965) was used to determine the Mixture 

Lower Explosivity Limit (MLEL) [vol%] and the Mixture Upper Explosivity Limit (MUEL) [vol%], as follows in Eq(4) 

and Eq(5): 

 𝑀𝐿𝐸𝐿 =  
1

∑
𝑥𝑖

𝐿𝐸𝐿𝑖

                                                                                                                                                        (4)      

𝑀𝑈𝐸𝐿 =  
1

∑
𝑥𝑖

𝑈𝐸𝐿𝑖

                                                                                                                                                        (5)      

where LELi and UELi [vol%] are the LEL and UEL of a single component of the mixture and xi is the molar 

fraction. The Burgess-Wheeler method (Zabetakis, 1965) were used to account for temperature difference, 

according to Eq(6) and Eq(7), respectively. 

𝐿𝐸𝐿(𝑇)

𝐿𝐸𝐿(𝑇0)
=  1 − 0.000721(𝑇 − 25°𝐶)                                                                                                                                                        (6)      

𝑈𝐸𝐿(𝑇)

𝑈𝐸𝐿(𝑇0)
=  1 + 0.000721(𝑇 − 25°𝐶)                                                                                                                                                        (7)      
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where LEL(T) and UEL(T) [vol%] are LEL and UEL at the working temperature T (°C) and LEL(T0) and UEL(T0) 

[vol%] are LEL and UEL [vol%] at 25°C. The effect of pressure was considered by applying Eq(8) and Eq(9) 

(Zabetakis, 1965):  

𝐿𝐸𝐿(𝑃) = 𝐿𝐸𝐿(𝑃0) − 0.71𝑙𝑜𝑔∆𝑃                                                                                                                             (8) 

𝑈𝐸𝐿(𝑃) = 𝑈𝐸𝐿(𝑃0) + 0.71𝑙𝑜𝑔∆𝑃                                                                                                                             (9) 

where LEL(P) and UEL(P) [vol%] are LEL and UEL at the working pressure P (bar) and LEL(P0) and UEL(P0) 

[vol%] are LEL and UEL at 1 bar.The toxicity (ITOX,max) was evaluated by accounting for the ACGIH Threshold 

Limit Value – Short-Term Exposure Limit (TLV – STEL) and the OSHA Permissible Exposure Limit – 8-hour 

Time-Weighted Average (PEL – 8 hour TWA) for methanol, ethanol and n-hexane, petroleum ether, respectively 

(OSHA, 2023). The overall process safety index (IPI) provided by Eq.(10) is strictly related to the process 

equipment and the adopted operating conditions.  

𝐼𝑃𝐼 =  𝐼𝐼,𝑚𝑎𝑥 + 𝐼𝑇,𝑚𝑎𝑥 + 𝐼𝑃,𝑚𝑎𝑥 + 𝐼𝐸𝑄                                                                                                                                       (10)                                 

II,max, the inventory subindex, was defined as a function of the total feed flow rate, consisting of the sum of 

solvent and biomass flow rates. Process stream calculation was based on batch experimental runs, by fixing 

the compounds of interest flow rate equal to the highest experimentally obtained among the tested extraction 

techniques and process variables. The liquid and the solid flow rates were normalized to a maximum TP flow 

rate as a product. The input and the output flow rates were defined as the cumulative quantities needed to 

perform a defined number of extractions in 24 hours. The maximum number of feasible batches per day for each 

extraction process was evaluated considering both the extraction and dead times, the latter including the 

heating, cooling, material loading, and discharging phases. IT,max and IP,max consider the maximum process 

temperatures and pressures, respectively. IEQ was associated to equipment complexity, in agreement with 

“simplification” principle of inherent safety design. Index values were assigned according to the checklist 

reported in Table 1. Answers to the proposed questions were provided by expert elicitation, on the basis of 

specific numerical parameters (LEL, UEL, TLV, etc.), experience, and targeted literature review, for both 

chemicals and process factors. 

Table 1: Checklist to qualitatively evaluate the inherent safety of chemicals, process, and equipment involved 

in the process alternatives under study. 

Question 

number  
Question 

Chemicals 

1 What is the hazard level of the boiling temperature of the chemicals involved in the reaction? 

2 What is the flashpoint of each component of the mixture? 

3 What are the explosivity limits of each component of the mixture? 

4 Are the chemicals involved in the process stable at the chosen operating condition? 

5 What is the toxicity level of the chemicals involved in the extraction? 

6 What is the corrosiveness level of the chemicals involved in the extraction? 

Process and equipment 

1 Does the inlet mass flow to the process constitute a relevant hazard? 

2 What is the volume level of the chemicals in the process tanks and extractors? 

3 How many process control devices are needed? 

4 What is the maximum achievable temperature? 

5 What is the maximum achievable pressure? 

6 How is the equipment layout organized? 

7 What is the level of complexity of the system? 

8 Does the equipment in the onsite area work in hazardous conditions? 

9 What is the integrity level of the process structures? 

10 Which operations are involved in the process and how are they connected together? 

Scores were assigned to each subindex through the use of specific values associated to the process features, 

according to Table 2. Consequently, the lower the total score, the higher the relative safety associated to the 
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index under investigation. Values of weights were set according to the methodology outlined by Heikkilä (1999), 

properly adapted to the investigated case study. 

Table 2: Values associated to chemicals and process conditions. 

Index Score 

IFL,max 
Non-flammable: 0; Combustible (flash point >328 K): 1; Flammable (flash point ≤ 328 K): 2; Easily flammable 

(flash point <294 K): 3; Very flammable (flash point <273 K & boiling point ≤ 308 K): 4 

IEX,max 
Non explosive: 0; (UEL-LEL) vol% = 0–20: 1; (UEL-LEL) vol% = 20–45: 2; (UEL-LEL) vol% = 45–70: 3; 

(UEL-LEL) vol% = 70–100: 4 

ITOX,max 
TLV or PEL > 10000 ppm: 0; TLV or PEL ≤ 10000 ppm: 1; TLV or PEL ≤ 1000 ppm: 2; TLV or PEL ≤ 100 ppm: 

3; TLV or PEL ≤ 10 ppm: 4; TLV or PEL ≤ 1 ppm: 5; TLV or PEL ≤ 0.1 ppm: 6 

ICOR,max Carbon steel: 0; Stainless steel:1; Special materials: 2 

II,max 
(L+S)in/(L+S)min < 1.5: 0; (L+S)in/(L+S)min = 1.5–3: 1; (L+S)in/(L+S)min = 3–5: 2; (L+S)in/(L+S)min = 5–8: 3; 

(L+S)in/(L+S)min = 8–10: 4; (L+S)in/(L+S)min ≥ 10: 5 

IT,max T = 273–343 K: 0; T < 273 K or T = 343–423 K: 1; T = 423–573 K: 2; T = 573–873 K: 3; T > 873 K: 4 

IP,max 
P = 0.05–0.5 MPa: 0; P = 0–0.05 or P = 0.5–2.5 MPa: 1; P = 2.5–5.0 MPa: 2; P = 5.0–20.0 MPa: 3; 

P = 20.0–100.0 MPa: 4 

IEQ 

Stirred vessel: 0; Stirred vessel with heating jacket: 1; Stirred vessel with ultrasounds: 2; Stirred vessel with 

heating jacket and under pressure: 3; Stirred vessel with heating jacket and condenser: 4; Stirred vessel with 

heating jacket and microwaves, under pressure: 5 

3. Materials and methods 

Table 3: Experimental extraction conditions.  

Extraction 

technique 
Solvent type 

L/S 

(10-3 m3/kg) 

Solvent 

(*10-6 m3) 
Tmax (K) Pmax (MPa) t (h) 

SLE 

Methanol 10 30 298 0.10 24 

Ethanol 10 30 298 0.10 24 

Water 10 30 298 0.10 24 

Ethanol 50% (v/v) 10 30 298 0.10 24 

HPTE 

Methanol 10 40 453 2.50 1.5 

Ethanol 10 40 453 2.00 1.5 

Water 10 40 453 1.30 1.5 

Ethanol 50% (v/v) 10 40 453 1.60 1.5 

Methanol 10 40 423 1.40 1.5 

Ethanol 10 40 423 0.96 1.5 

Water 10 40 423 0.48 1.5 

Ethanol 50% (v/v) 10 40 423 0.72 1.5 

Methanol 10 40 393 0.64 1.5 

Ethanol 10 40 393 0.42 1.5 

Water 10 40 393 0.20 1.5 

Ethanol 50% (v/v) 10 40 393 0.31 1.5 

Ethanol 54% (v/v) 10 40 453 0.72 1 

MAE 
Maximum radiation 

power: 500 W 

Methanol 10 20 383 0.48 1.5 

Ethanol 10 20 383 0.30 1.5 

Water 10 20 383 0.14 1.5 

Ethanol 50% (v/v) 10 20 383 0.36 1.5 

Ethanol 54% (v/v) 10 20 453 0.36 1 

UAE 
Ultrasound amplitude: 

40%,On/off pulsed 

ratio: 30 s/ 30 s 

Ethanol 54% (v/v) 10 30 298 0.10 1 

Water 10 30 298  0.10 1 

RE 
n-hexane 10 200 342 0.10 2 

Petroleum ether 25 50 333 0.10 4 
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Antioxidant compounds were extracted from dried SCGs by testing four different techniques: SLE, HPTE, MAE, 

and UAE. SLE was performed in a stirred extractor working at room temperature, while for HPTE a stainless-

steel extractor equipped with a heating jacket was used. The system worked at temperature higher than the 

solvent boiling point temperature (1 atm), so under pressure (f(T)), and in the closed vessel an inert atmosphere 

was created by fluxing N2 before vessel sealing and heating, to reduce antioxidants’ degradation reactions. MAE 

was carried out in a closed PTFE vessel, posed under agitation in a microwave laboratory oven, composed by 

a stirred vessel, equipped with a heating jacket and a microwave generator. A vessel working at room 

temperature and atmospheric pressure was employed for UAE, where a submerged ultrasound probe delivered 

the mechanical energy to the extraction medium. Reflux extraction (RE) was, instead, the selected technique 

aimed at recovering the coffee oil (lipidic fractions of SCG). The reflux extractor, working at the solution boiling 

point, is composed of an extraction vessel, heated by an external jacket, and of a condenser at the top, to avoid 

internal pressure raising. Operating conditions adopted for each extraction technique are shown in Table 3. 

Optimal operating conditions were chosen after a critical literature review and previous sets of experiments 

(Pettinato 2019, 2021).The obtained extracts were analyzed in terms of total polyphenol yields (TPY, Eq(11)) 

through Folin-Ciocalteu’s assay, according to the protocol reported in Pettinato et al., (2019) and lipid fraction 

(Eq(12)), determined gravimetrically. 

𝑇𝑃𝑌 = 𝑇𝑜𝑡𝑎𝑙 𝑝𝑜𝑙𝑦𝑝ℎ𝑒𝑛𝑜𝑙 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 𝑖𝑛 𝑡ℎ𝑒 𝑒𝑥𝑡𝑟𝑎𝑐𝑡 ·
𝑆𝑜𝑙𝑣𝑒𝑛𝑡 𝑣𝑜𝑙𝑢𝑚𝑒

𝑚𝑎𝑠𝑠𝑑𝑟𝑖𝑒𝑑 𝑆𝐶𝐺
                                                                   (11) 

𝐿𝑓 =
𝑚𝑎𝑠𝑠𝑙𝑖𝑝𝑖𝑑𝑠

𝑚𝑎𝑠𝑠𝑑𝑟𝑖𝑒𝑑 𝑆𝐶𝐺
                                                                                                                                                        (12)                                                                                                                                       

4. Results 

4.1 Extractions yields and comparison 

The highest TP yield (71.8 ± 4.9 mgCAE/gSCG) was obtained by HPTE at 453 K and 1.6 MPa and with ethanol 

50% (v/v) as solvent, so this performance was used as reference for calculations. Approximately, the same 

results were obtained for RE under both the explored extraction conditions: 8.13 ± 0.21% and 8.42 ± 1.58% for 

n-hexane and petroleum ether, respectively. 

4.2 Inherent safety assessment 

The checklist procedure was carried out for each extraction alternative to qualitatively identify the weakest points 

to focus on during the score assignment step. Methanol was the most hazardous solvent in terms of flammability, 

explosiveness, toxicity, and corrosiveness, due to its lower boiling point and flashpoint and its broader explosive 

range. At more severe conditions, the hazards of the chemicals mainly increased using HPTE, which exploits 

higher pressures and temperatures. MAE and UAE present additional hazards related to thermal, non-thermal, 

and acoustic impacts in the surrounding environment. For each proposed antioxidant extraction technology, 

water was the safest solvent, since it led to a lower ICI and, consequently, ITI. However, solvent separation 

required an increased energy consumption, if compared to the use of other more volatile solvents, like methanol. 

The last one demonstrated to be the most hazardous extraction solvent (Figure 1), as verified by the calculous 

of ICI. It also presented the highest score for ITI, if used in combination with HPTE at 453 K and 2.5 MPa. In fact, 

the severe operating conditions had a significant impact on IPI, as well as the equipment complexity, affecting 

IEQ. Significant lower IT and IP scores were obtained by applying the inherent safety guideword “attenuation”: 

Lower temperatures and pressures than HPTE were selected as optimal ones in MAE. However, it should be 

remarked that the equipment complexity increased, due to the microwaves application. SLE was applied as a 

further alternative by a combination of the “attenuation” and “simplification” principles, leading to less hazardous 

operating conditions and a simpler equipment. On the other hand, II increased, leading to the necessity of storing 

and handling larger amount of chemicals. This finding is connected to the higher inlet flow rates with respect to 

those of HPTE, where the guideword “intensification” was fully applied. SLE carried out with water, as a 

substitute of methanol and ethanol, was finally individuated as the safest alternative, but not the most economic 

and technical solution due to the low extraction yield, the large volume of equipment requires, and the lower 

volatility of the solvent to be separated from the compounds of interest. Once the antioxidants were recovered, 

the obtained solid residues were further treated to extract. Extraction of lipids were carried out by using the 

same process equipment at similar operating conditions with petroleum ether and n-hexane as solvents. The 

final ITI were affected only in terms of inventory, since petroleum ether required a higher inlet flow rate. 
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Figure 1: ICI and IPI for SLE, HPTE, and MAE with methanol as solvent. 

5. Conclusions 

Within the broad context of energy transition, in this study, SCGs were valorised by recovering antioxidants and 

lipids. Starting from experimental data, an inherent safety index was developed to compare different extraction 

techniques in terms of chemicals, process conditions, and equipment. Solvent selection and operating 

conditions are the aspects mainly impacting the IS index value. Further steps include extending the approach 

to occupational safety indices, e.g., to evaluate the non-thermal effect of cavitation and the ultrasonically induced 

heating, as well as investigating the trade-off between the safety level and the costs connected to the process. 
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