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The issue of global warming imposes a change of paradigm in the energy sector to mitigate the human impact 

on the environment. In this perspective, hydrogen can be produced through water electrolysis and used in fuel-

cell systems with near-zero pollutant emissions. Nevertheless, the distribution system represents one of the 

main bottlenecks for a future transition to a hydrogen economy. The possibility of transporting hydrogen through 

the existing pipeline network is economically attractive. Nevertheless, most pipeline steels are prone to 

hydrogen-induced damage, and their mechanical properties are degraded by hydrogen gas to an extent that 

could result in sudden component failures. Hydrogen embrittlement can be responsible for undesired releases 

with potentially catastrophic consequences. This study evaluates the safety of existing European natural gas 

pipelines for hydrogen transport through machine learning tools. The material susceptibility to hydrogen 

embrittlement is predicted under different working conditions in order to prevent loss of material integrity and 

eventual releases. This study aims at bridging the gap between safety and material science, as it can optimize 

predictive maintenance of hydrogen pipelines, thus promoting the widespread utilization of hydrogen in the 

forthcoming years. 

1. Introduction 

Hydrogen is considered one of the most promising energy carriers for a sustainable future in the energy sector 

(IEA, 2019). The need to face climate change by adopting clean and sustainable fuels is the key factor driving 

the increasing hydrogen utilization in the forthcoming years. This clean and versatile energy carrier can be 

produced from water electrolysis through renewable sources and efficiently used in fuel cells and conventional 

energy systems. It has the potential to decarbonize energy-intensive processes in transportation, the 

manufacturing industry, and power generation. Furthermore, hydrogen can address the intermittency of most 

renewable energy sources by storing and transporting surplus energy. The need to distribute affordably and 

safely vast amounts of hydrogen over long distances requires an extensive infrastructure like the existing 

pipeline network. At present, there are 973,000 km of operating natural gas pipelines around the world, and 

approximately 12.5% of the total is in Europe (Pluvinage, 2021). The use of the existing pipelines for hydrogen 

distribution is a cost-effective option and several research projects are investigating this possibility (Topolsky et 

al., 2022). However, most pipeline steels are prone to hydrogen-induced material degradations. Hydrogen 

penetrates the metal surface, permeates the lattice, and accumulates near internal defects and zones with high 

triaxial stress, thus facilitating crack initiation and propagation. Even if hydrogen embrittlement (HE) is a long-

known phenomenon, it is still responsible for several industrial failures with potentially catastrophic 

consequences (Campari et al., 2023a). A recent study from the EU Agency for Cooperation of Energy 

Regulators highlights that there is no clear understanding regarding the relationship between steel grades and 

hydrogen embrittlement susceptibility (ACER, 2021). This study aims to develop a machine learning (ML) 

approach to evaluate the influence of various susceptibility factors and to predict HE effects in several low-alloy 

steels. The purpose is to identify suitable materials for hydrogen transport via pipelines. A database has been 

created from several sources in the scientific literature and used to train and evaluate the ML model. The next 

section provides an overview of the safety issues associated with hydrogen transport pipelines. Then, the 
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methodology adopted is explained, focusing on the description of the database and the ML models. Finally, the 

results are presented and critically discussed to make recommendations for advancement in safety science 

through the risk-informed design of new pipelines and predictive maintenance of the existing infrastructure. The 

overall objective of this study is to bridge the gap between material science and operational safety in the 

emerging hydrogen industry. In this way, it will be possible to optimize predictive maintenance strategies of 

hydrogen transport and storage equipment, thus promoting its widespread utilization in the long term. 

2. Hydrogen transport pipeline 

Gaseous hydrogen transportation includes three options: trucks, trains, and pipelines. The International Energy 

Agency analyzed the most viable methods for hydrogen transport and distribution, reaching the conclusion that 

pipelines are the most cost-effective delivery option for large amounts of H2 over distances larger than 500 km 

(IEA, 2019). In addition, the unbalanced distribution of production and end-use sites can be reconciled through 

an extensive pipeline network. Pipeline steels, classified by the American National Standards Institute, differ in 

microstructure, strength, and presence of micro-alloying elements. In Europe, 70% of the natural gas pipeline 

network is made of Grade B, X46, and X52 (Pluvinage, 2021). However, the advancements in manufacturing 

techniques, grain engineering, and control of the chemical composition have stimulated the utilization of more 

performant steels in terms of strength, formability, and ductility. X60, X65, X70, X80, X100, and X120 are new 

pipeline steel grades developed for oil and gas transport in harsh environments. The American Petroleum 

Institute (API) has established that the Yield Strength (YS) to Ultimate Tensile Strength (UTS) ratio should be 

lower than 0.93 for pipeline applications (Tang and Stumpf, 2008). The Carbon Equivalent (CE) is a parameter 

related to the chemical composition of the steel and indicates its weldability and toughness. The European 

Industrial Gases Association limits the CE of pipeline steels for hydrogen applications to 0.35 (EIGA, 2014). The 

microstructure influences the strength, toughness, and ductility of the materials. The importance of 

microstructural features for hydrogen-assisted degradation in pipeline steels has been largely investigated 

(Ohaeri et al., 2019). Table 1 presents the most significant characteristics of pipeline steels. 

Table 1: Material properties of pipeline steels (API, 2018) 

Material YS (MPa) UTS (MPa) YS/UTS CE Microstructure 

Grade A 210 335 0.63 n.g. Ferritic 

Grade B 245 415 0.58 0.39 Ferritic 

X42 290-495 415-655 0.73 0.40 Ferritic, pearlitic 

X46 320-525 435-655 0.78 n.g. Ferritic, pearlitic 

X52 360-530 460-760 0.73 0.30 Ferritic, pearlitic 

X56 390-545 490-760 0.75 0.22 Ferritic, pearlitic 

X60 415-565 520-760 0.77 0.36 Ferritic, pearlitic, austenitic 

X65 450-600 535-760 0.81 0.44 Ferritic, pearlitic 

X70 485-635 570-760 0.84 0.43 Ferritic, bainitic, pearlitic, martensitic, austenitic 

X80 555-705 625-825 0.87 0.41 Ferritic, bainitic, martensitic, austenitic 

X90 625-775 695-915 0.87 0.37 Ferritic, bainitic, martensitic, austenitic 

X100 690-840 760-990 0.87 0.46 Ferritic, bainitic, martensitic 

X120 830-1050 915-1145 0.91 0.40 Ferritic, bainitic, martensitic 

 

In hydrogen environments, most ferritic steels are prone to hydrogen embrittlement degradation, which 

manifests itself as a reduction in tensile and fracture properties and an enhancement in fatigue crack growth 

rate. HE relies on the synergistic effect of three factors: environment, material, and load. The environmental 

severity depends on the hydrogen partial pressure, the temperature, and the hydrogen purity. On the other 

hand, the material susceptibility is influenced by the chemical composition, the microstructure, the yield and 

ultimate tensile strength, the presence of welds and heat-affected zones (HAZs). Finally, the loading conditions 

depend on the presence of stress concentrators (e.g., notches or cracks), the strain rate, and the frequency and 

amplitude of cyclic loads (Campari et a., 2023b). In general, low-grade steels are considered less susceptible 

to hydrogen embrittlement due to their lower strength and higher ductility. Nevertheless, this strength 

dependence is not valid for cyclic loads, and no consensus has been reached regarding the most suitable steels 

for hydrogen pipeline applications (Somerday and San Marchi, 2007). In any case, all steel grades are 

susceptible to HE, even if to different extents, and should be carefully assessed in the design phase and 

inspected and maintained while in operation. 
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3. Methodology 

The machine learning prediction of HE effects in pipeline steels consist of two main steps: the database creation 

and pre-processing and the training and evaluation of the ML classifiers. The methodology adopted is described 

in the following section. 

3.1 Database creation and pre-processing 

The database has been collected from peer-reviewed journals and publicly released reports, such as the 

“Technical Reference for Hydrogen Compatibility of Materials” (San Marchi and Somerday, 2012). It includes 

the results of in-situ slow strain rate tests conducted on low-alloy steels. The database consists of 132 tests and 

35 features (10 categorical and 25 numerical). The data have been pre-processed to ensure the clean and 

consistent format required for the machine learning classification. The Embrittlement Index (EI) has been 

identified as the target to predict. EI is defined by the following equation: 

EI =
RAref − RAH2

RAref
∙ 100 =

[(Ai − Af) Af⁄ ]ref − [(Ai − Af) Af⁄ ]H2

[(Ai − Af) Af⁄ ]ref
∙ 100 (1) 

RAref and RAH2 are the reduced area at fracture in a reference environment (air or inert gases) and hydrogen, 

respectively. Ai and Af are the initial and final fracture areas, respectively. The report NASA/TM-2016–218602 

(NASA, 2016) has provided a basis for the classification of material susceptibility, which has been adopted in 

this study to make the following classification: “Unsuitable” (U) and “Potentially suitable” (PS) for hydrogen 

service. The U label indicates EI values higher than 50% and comprehends materials that are not recommended 

for hydrogen applications under the specified testing conditions. In contrast, the PS label represents EI values 

lower than 50%. The missing values have been filled in by assuming an ambient temperature of 22 °C, strain 

rate of 10-4 s−1, stress concentration factor of 5.5 for notched specimens, nominal chemical composition, and 

average yield and ultimate tensile strengths in accordance with ASME B31.12 (ASME, 2019). 

3.2 Machine learning classification 

Three ML algorithms, i.e., Random Forest (RF), Artificial Neural Network (ANN), and AdaBoost (AB), have been 

trained to predict the HE susceptibility of materials and their prediction capabilities have been evaluated and 

compared. The training and evaluation process is shown in Errore. L'origine riferimento non è stata trovata.. 

 

Figure 1: Flow diagram of the machine learning model based on RF, ANN, and AB classifiers 

The database is divided into training and evaluation databases in a ratio of 70:30. The 70% dataset is used to 

train three classification algorithms, while the 30% dataset is fed into the trained model to test its performance. 

RF and AB are extensions of the Decision Tree where several trees are ensembled and trained on random data 
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subsets. These trees are called weak classifiers because they iteratively get trained based on their 

misclassifications. Both RF and AB ensure low correlation among decision trees by generating a random subset 

of features. However, while in the Random Forest algorithm all the weak learners have the same importance, 

AdaBoost weights the weak classifiers based on their accuracy and performance (Praveena, 2017). Thus, in 

the latter case, better-performing classifiers have more influence on the final classification. A strong classifier is 

obtained by the combination of the weak classifiers. In contrast, ANN is a representation of the human brain's 

functioning and establishes a non-linear mapping between features and targets. There are input layers, hidden 

layers, and output layers composed of neurons. These neurons are interconnected based on their significance 

for the classification task. The advantage of ANN over other algorithms is that it does not impose any constraints 

on training data. It can learn from the training data and independently predict new outcomes (Shanmugasundar 

et al., 2021). 

4. Results and discussion 

The performance of the classifiers has been assessed by three evaluation metrics: accuracy, precision, and 

recall. Accuracy refers to the fraction of correct predictions. Precision indicates the fraction of true positive 

predictions, while recall indicates the proportion of positive labels that have been correctly predicted (Tamascelli 

et al., 2020).  True positive (TP) and true negative (TN) indicate the correct predictions of “Potentially suitable” 

and “Unsuitable” materials, respectively. Likewise, false positive (FP) and false negative (FN) indicate the 

mislabelled “Unsuitable” and “Potentially suitable” materials, respectively. The evaluation metrics of these three 

algorithms are reported in Errore. L'origine riferimento non è stata trovata.. 

Table 2: Accuracy, precision, and recall for Random Forest, AdaBoost, and Artificial Neural Network models 

Evaluation metric Formula RF AB ANN 

Accuracy TP + TN

TP + TN + FP + FN
 0.840 0.845 0.775 

Precision TP

TP + FP
 0.842 0.844 0.773 

Recall TP

TP + FN
 0.840 0.845 0.775 

 

The confusion matrices for the three classification algorithms are represented in Figure 2: 

 

Figure 2: Confusion matrices for a) Random Forest, b) AdaBoost, and c) Artificial Neural Network models 

The Random Forest algorithm could correctly classify 84% of the evaluation database, whereas AdaBoost is 

the most competitive with 84.5% accuracy. On the other hand, Artificial Neural Network could correctly classify 

only 77.5% of the evaluation datasets. In all cases, the values of accuracy, precision, and recall are similar. It is 

expectable since the model has been trained and evaluated on a balanced dataset; in other words, the share of 

“Unsuitable” and “Potentially suitable” labels are comparable. It is worth mentioning that not all the evaluation 

metrics have the same importance. The incorrect prediction of an “Unsuitable” material, classified as a 

“Potentially suitable” one, has more implications than vice versa. This misclassification underestimates the 

hydrogen effect on the metal, thus leading to an improper material selection for pipeline applications and 

increasing the risk of failure. Hence, FP results should be minimized, and, consequently, precision is the most 

significant evaluation metric for this specific application. Considering the nature of the dataset, RF and AB have 

been identified as effective machine-learning techniques, compared to the ANN classifier. Despite the metrics, 

it is crucial to understand that HE depends on several other factors, such as internal defects, orientation during 

testing, and material’s anisotropy, which are not quantifiable through features in the database. In addition, a 

thorough assessment of fracture toughness and fatigue performance is needed for a decisive evaluation of 

materials based on HE susceptibility. Table 3 ranks the pipeline steels based on the percentage of U labels that 
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have been predicted and indicates the share of these materials in the European pipeline network (Pluvinage, 

2021). 

Table 3: Ranks of materials based on their susceptibility towards HE 

Rank Material Share in the European 

pipeline network 

“Unsuitable” 

predictions 

Hydrogen 

compatibility 

1 X100 0% 89% Extremely Low 

2 X70 9% 79% Extremely Low 

3 X52 – Grade B 25% – 20% 50% Low 

4 X80 0% 48% Medium – Low 

5 X65 7% 25% Medium – High 

6 X60 23% 22% Medium – High 

7 42CrMo4 0% 18% High 

8 X42 – X120 8% – 0% 0% Very High 

 

X100 has been identified as the pipeline material most prone to hydrogen-induced ductility loss. In contrast, X42 

and X120 are the most suitable low-alloy steels for hydrogen pipelines since none of the tests in the dataset 

has a U label. However, the ranking is based on a limited number of tests and further developments of the 

present approach are needed; hence, these findings should not be considered definitive. Even if high-grade 

steels, such as X100 and X120, have been developed for natural gas transportation in harsh environments, their 

suitability in hydrogenated environments is not necessarily promising. The most used materials in the existing 

pipeline infrastructure, i.e., Grade B and X52, exhibit low hydrogen compatibility, depending on the specific 

operating conditions. This result further establishes the need to thoroughly evaluate the material’s features 

before drawing a definitive conclusion regarding the identification of the most suitable materials for hydrogen 

applications. Figure 3 shows the Norwegian cross-border pipeline network, highlighting the hydrogen 

compatibility of the existing infrastructure (operated by Gassco AS). Information regarding the construction 

materials is not available for most of these pipelines, since protected by industrial secrecy. 

 

 

Figure 3: Map of the Norwegian cross-border pipeline network, assessed for hydrogen compatibility 

In addition, information regarding the terminals connected, the total pipeline length and the construction material 

is provided in Table 4. As a result, Zeepipe (connecting Norway to Belgium) is potentially suitable for hydrogen 

transport. In contrast, both Langled (connecting Norway to England) and Europipe II (connecting Norway to 

Germany) have been designed for natural gas and cannot be used to transport H2 gas. 
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Table 4: Cross-border gas pipelines originating from Norway with publicly disclosed materials 

Pipeline Terminals Length Material H2 compatibility 

Europipe II Kårstø (NO) – Dornum (GE) 658 km X70 Extremely Low 

Langeled North – Langeled 

South 

Nyhamna (NO) – Easington (UK) 1170 km X70 Extremely Low 

Statpipe – Tampen Link – Flags Kårstø – St. Fergus (UK) 781 km X65 Medium-High 

Zeepipe II A – Zeepipe Kollsnes (NO) – Zeebrugge (BE) 1112 km X65 Medium-High 

5. Conclusions 

Three ML algorithms, namely Random Forest, AdaBoost, and Artificial Neural Network have been employed to 

evaluate the HE susceptibility of pipeline steels. A database has been created, using the results of in-situ tensile 

tests conducted in hydrogenated environments. A 70% sub-database was used to train the algorithms, while 

the remaining 30% was used to test them. The nature of the dataset, the target to predict (i.e., the Embrittlement 

Index), and the comparative analysis of the algorithms have identified Random Forest and AdaBoost as the 

most applicable and efficient supervised learning techniques for this specific application. These algorithms were 

84% and 84.5% accurate in predicting EI. Pipeline materials have been ranked based on the HE susceptibility. 

Finally, the cross-border pipelines connecting Norway with the rest of Europe, have been assessed for their 

hydrogen compatibility. As a result, adapting the natural gas pipeline network for hydrogen transport requires 

several modifications in the existing architecture and a thorough evaluation of the impact of hydrogenated 

environments on fracture toughness and fatigue performance. 
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