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The present paper is a review of the most viable, sustainable, and carbon-neutral industrial routes available for 

producing urea based de-NOx reduction agents (e.g., AdBlue 32%), with a negligeable contribution to the GHG 

emissions, in comparison with the conventional current applications.Starting from the analysis of the trend in 

the demand of urea-based de-NOx agents and the forecast growth of such market, the study provides a 

quantitative assessment of the contribution to the GHG emissions due to the common production routes of these 

chemicals, showing an alternative industrial process which balances and neutralizes this adverse environmental 

effect.Indeed, some carbon-intensive industrial processes such as cement or steel productions have, as of now, 

no feasible way to avoid or significantly limit CO2 emissions from their flue gas waste streams. The integration 

schemes with such existing large CO2 point emitters are investigated with the objective to produce a carbon-

neutral urea-based de-NOx agent with minimum additional contributions to the GHG emissions. 

1. Introduction 

Nitrogen oxides are well known to be troublesome gaseous components polluting atmospheric air. Among the 

nitrogen oxides forms (N2O, NO, N2O3, NO2, N2O4, N2O5), the most common in atmospheric air are nitrogen 

oxide (NO) and nitrogen dioxide (NO2), which total content is marked with a common symbol NOx.  

Though nitrogen oxides have also non-anthropic origin, as instance the denitrification natural process of soils 

(Abbasi and Adams, 2000), the predominant source is represented by all combustion processes of solid, liquid 

and gas fuels. Several industrial activities heavily contribute to produce NOx polluted flue gas: transport and 

automotive, power plants, industrial processes (mostly nitric acid and derivatives) and municipal solid waste 

incineration. NOx emissions can cause a series of health problems, such as eye and throat inflammation, chest 

tightness, nausea, and headaches, as well as environmental problems, such as ozone depletion, acid rain, 

haze, photochemical smog, and indirect greenhouse gas effects (Fuglestvedt et al., 1996). Therefore, NOx 

emissions must be reduced and controlled. 

Most common NOx control methods can be categorized into following ones (Zhu and Xu, 2022): 

• pre-combustion (e.g. by selecting fuel sources with less nitrogen content),  

• in-combustion (e.g. low NOx burners), and  

• post-combustion (via reaction with absorbents, oxidants, or reductants). 

By using the first two control methods, most of the exhaust gases from industrial combustion processes cannot 

meet emission standards. Therefore, a post-combustion approach is usually used to achieve a higher NOx 

reduction. The most widely used post-combustion technique is the Selective Catalytic Reduction (SCR), which 

reduces NOx into molecular nitrogen (N2) by heterogeneous catalytic reaction with gaseous ammonia under 

moderate temperature (preferably in the range 250÷350 °C). Gaseous ammonia can be introduced into the flue 

gas chamber either as straight ammonia, or as other ammonia precursor, that releases gaseous ammonia after 

thermal decomposition in contact with hot flue gas.The current orientation of the market, between the different 

precursors of gaseous ammonia, is in favor of the usage of urea [CO(NH2)2] diluted in a water solution, as it is 

not toxic in comparison with water-ammonia solutions, and it is produced worldwide on a large scale, which 

makes it widely available (Halonen et al., 2017). It is well known that the production process of urea, as well as 

the further thermal decomposition of the same into CO2 and NH3 occurring in the SCR flue gas system, have a 
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significant contribution to GHG emissions.The demand of de-NOx reduction agents is expected growing quickly 

in the next years, due to more stringent legislation on emissions of NOx gases (such as the Directive 

2010/75/EU).Based on the data currently available of CO2 emissions from Energy Combustion and Industrial 

Process (IEA, 2021), a forecast of 80 Mt/y has been estimated for the world-scale demand of urea based de-

NOx reduction agents within the year 2040, for matching the most stringent NOx emission scenarios (see table 

1). The estimate is coherent with the available forecast in cutting the worldwide NOx emissions from current 108 

Mt/y to 45 Mt/y in 2040 (IEA, 2022). Such expected demand of urea based de-NOx reduction agents, assuming 

a conventional production route based on natural gas, would generate in the year 2040 an amount of GHG 

emissions more than 90 Mt CO2 eq./y.It is not sustainable that the control of NOx emissions generates a drawback 

effect with detrimental effects over the environment. It is then of interest to study and develop alternative routes, 

aimed to produce urea based de-NOx reduction agents, that have the advantage of negligeable GHG effects. 

2. Mechanism of NOx Reduction Reactions 

As discussed by Halonen et al. (2017), one of the most widespread de-NOx reduction agents for SCR systems 

is urea diluted in a water solution. The trade name for the urea-water solution is AdBlue in Europe and DEF 

(Diesel Exhaust Fluid) in the US. In the automotive industry, urea with a concentration of 32.5 wt% is typically 

used. This concentration was chosen because it is the concentration with the lowest crystallization point of – 11 

°C even though higher concentrations of up to 50 wt% can be used (marine grade). 

A simplified scheme of the thermal decomposition of urea in flue gas and NOx reduction reactions with ammonia 

in SCR systems is given below (Maizak et al., 2020): 

CO(NH2)2 → NH3 + HCNO (1) 

H2O + HCNO → NH3 + CO2 (2) 

NO + NH3 + ¼ O2 → N2 + 3/2 H2O (3) 

NO + NO2 + 2 NH3 → 2 N2 + 3 H2O (4) 

4 NH3 + 3 O2 → 2 N2 + 6 H2O (5) 

2 NH3 + 2 O2 → N2O + 3 H2O (6) 

2 NH3 + 2 NO2 + 2 H2O → NH4NO3 + NH4NO2 (7) 

In the preferred temperature range of SCR systems (i.e. 250÷350 °C), reactions (1) to (4) are sufficient to 

represent adequately the thermodynamic of the system. 

As per stoichiometry, every 1 mol of NOx being reduced into N2 is balanced by 1 mol of NH3 being depleted.  

Assuming the ammonia slip is negligeable for our considerations, based on reactions (1) and (2), 1 mol of urea 

is then sufficient for reducing 2 mols of NOx into N2. 

3. Forecast of the Demand of De-NOx Reduction Agents and Relevant GHG Impact 

Though the current market of urea based de-NOx reduction agents is only 6 Mt/y in comparison with the world 

urea production of 170 Mt/y (Argus and Fertecon, 2021), the demand is expected to increase quickly, motivated 

by the growing stringency of legislation on emissions of NOx gases (Directive 2010/75/EU and following 2017 

LCP BREF). The forecast is that the industrial sector with dominating demand of de-NOx systems will be the 

massive coal and natural gas fired power generation sector, which alone represents half of the current world 

Total Energy Supply (IEA, 2021). 

 

Figure 1: block diagram and main GHG sources of the conventional urea process. 
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An estimate for the potential demand of urea de-NOx reduction agents has been carried out considering the 

mechanism of reaction explained in paragraph 2, together with the flue gas emission database available for 

combustion sources in the energy and industrial process, and the NOx emission scenarios outlined by the IEA 

study (2022) for the next two decades. Data available from the European IPPC Bureau (2007) have been used 

to appraise the GHG emissions correlated to the increased demand of urea; the Figure 1 provides a summary 

of main GHG contributors of the conventional urea process. 

The biggest CO2 contributor is the production of the ammonia via Steam Methane Reformer (SMR), which is 

equivalent to 0.97 t CO2 eq./t of urea and represents almost the 85% of GHG generation. The contribution factors 

due to process heat (steam) and electric energy (required by the transformation and finishing process) represent 

roughly the 10% and 5% respectively. 

To sum up, the overall carbon footprint of conventional urea production process is 1.17 t CO2 eq./t (in liquid 

solution form), or 1.22 kg CO2 eq./t (in solid granulated form). 

The GHG generation due to the expected demand of urea de-NOx agents is outlined in Table 1. 

Table 1: urea de-NOx worldwide carbon footprint, for future scenarios of reduced NOx emissions, using the 

urea conventional production process. 

 

 

 

 

 

 

 

 

 

 

It can be concluded that the increased demand of urea de-NOx reduction agents awaited in the next decades, 

assuming a conventional urea production route based on natural gas, would generate within the year 2040 an 

amount of GHG emissions more than 90 Mt CO2 eq./y. 

4. Carbon Capture Technologies Integrated with Existing Industrial Processes 

Power plants and other important industrial activities, such as cement and steel productions, release relatively 

high amounts of anthropogenic carbon dioxide. Integrating the recovery process of these large point source 

emitters with new urea plants, expected to be in operation for balancing the increasing demand of de-NOx 

reduction agents, is seen as a key task to achieve the target of minimizing the GHG effects that otherwise would 

arise.To date, most research and development has centered on capturing CO2 emitted from coal power plants, 

as these are the largest emitters; however also the CO2 concentration plays a crucial role in selecting the most 

suitable and attractive source. In fact, the separation efficiency of every technology is strongly dependent on 

CO2 partial pressure, hence the the cost of capture is more beneficial at higher concentrations. 

As can be evaluated from table 2, comparing CO2 emissions from power and large industrial point sources, 

cement and iron productions look the most attractive industrial processes for the integration with urea production 

process, for the higher concentration and larger emitter size. 

Table 2: Large CO2 emissions from power and industrial point sources worldwide [Baker et al., 2018]. 

Source 

 

No of 

sources 

Total CO2    

emissions 

Mt/y 

Average 

source size 

Mt/y 

CO2 

concentration 

(% vol.) 

Electric power plant 5,840 14,600 2.5 5÷15 

Cement production 1,180 930 0.8 20÷30 

Refineries 640 800 1.3 30÷40 

Iron and steel 270 650 2.4 20÷30 

Petrochemical 470 380 0.8 5÷10 

 

Pollutant or 

Product 

Coal 

(Mt/y) 

Natural Gas 

(Mt/y) 

Oil 

(Mt/y) 

 

Current CO2 

emissions 15,300 7,500 10,700  

Forecast NOx 

emissions (2040) 9.8 13.7 21.5  

Forecast Urea     

de-NOx demand 23.7 33.1 23.3  

CO2 eq. GHG 27.8 38.8 27.3  

261



Several studies have been presented in describing the recent development of cost-effective technologies to 

capture the CO2 produced in power plants and industrial processes and utilize or sequester it underground 

(Figueroa et al., 2008). The main capture technology currently demonstrated at large scale is the chemical 

absorption, which makes use of amine based aqueous solvents, such as solutions of methyl-diethanolamine 

(MDEA) and mono-ethanolamine (MEA), or blend of MDEA and tri-ethylene tetramine (TETA), as discussed by 

Amann and Bouallou (2009).The amine solution, once enriched of CO2 in the Absorber, is then regenerated by 

stripping at lower pressure and by means of steam. Capacity up to 2.0 Mt/y of captured CO2 can be commonly 

achieved.The use of membranes has emerged as a promising second-generation capture technology for flue 

gas of power plants (Merkel et al., 2013). Membrane technology is at the development stage with several small 

pilot plants having been built and operated up to 100 kt/y of CO2. Membranes are expected to have competitive 

capture costs, as well as operational advantages such as simple flow scheme and no other power source other 

than electricity, so that no changes to the power plant steam cycle are needed. (Font-Palma et al., 2021). 

Ramírez-Santos et al. (2017) have estimated operation costs of less than € 33/t CO2 for capture from steel 

plants. Membranes for CO2 recovery from flue gas of both steel (Lie et al., 2007) and cement plants (Hägg et 

al., 2017) have been proven with pilot demonstration.  

As example of practical applications of membrane separation process, the figure 2 provides a schematic 

diagram of a cement plant fitted with a membrane CO2 capture system. Flue gas is available at 25% of CO2 

from kiln furnace. The system captures 80% of the CO2 emitted (800 t/d) at an energy cost of 286 kWe/t of CO2 

(Baker et al., 2018). 

 

 

 

 

 

 

 

 

Figure 2: CO2 membrane capture process applied to a cement plant. 

Another promising application for integrated process is shown in Figure 3, which provides a simplified block 

diagram of a steel production process. Total CO2 emissions are about 1.8 t CO2/t of steel produced. Exhaust 

gas from blast furnace (BF) stoves are 28.5% rich in CO2. Emissions are shown with the CO2 concentration in 

the gas and the mass of CO2 in kg/t of steel produced. 

 

 

 

 

 

 

 

 

Figure 3: CO2 emission sources for a blast furnace and BOF steel production process (Global CCS Institute, 

2015). 
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5. Production of Urea-based De-NOx Reduction Agents with Minimum GHG Emissions 

Here it is presented a case study showing how the GHG contribution of AdBlue urea solution can be minimized 

with an improved configuration. 

5.1 Case Study for the Improved Process 

Main assumptions of the case study for the carbon neutral AdBlue plant are: 

• Urea is produced in liquid form (AdBlue solution 32%) with a capacity of 500 kt/y via a Total Recycle CO2 

Stripping process; 

• Ammonia consumption is assumed 567 kg/t of urea and is supplied from a mix (50%/50%) of blue and 

green ammonia sources, assuming the relevant carbon contribution is equal to 0.17 and zero t CO2 eq./t of 

NH3 respectively (Mielke and Noelker, 2023); 

• The carbon contribution due to transportation of liquid ammonia to the urea plant is assumed 0.3 t CO2 eq./t 

of NH3 (Al-Breiki and Bicer, 2020), assuming ocean tankers fuelled by Heavy Fuel Oil; 

• CO2 feedstock is assumed 740 kg/ton of urea and is sourced from a nearby existing cement plant, captured 

by means of double stage membrane system; 

• Net consumption of process steam is zero by ensuring the recovery of the waste steam generated in the 

urea reactor to the pressure level required by the Stripping process (see figure 4); 

• Both CO2 and low-pressure steam compressors are driven by electromotor; 

• Electricity (for both process and utilities) is produced by a NG fired generator with 40% efficiency. 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: conceptual scheme of the urea melt section with zero import of process steam; the waste steam 

generated in the urea Reactor is recovered to the pressure level required by the Stripper. 

 

A comparative quantitative analysis of the improved process has been performed against a conventional urea 

scheme, where the ammonia is produced via SMR, and the excess CO2 is vented to the atmosphere after 

separation in the amine recovery section. The assumptions of GHG generation due to the production of the 

ammonia feedstock are the same ones used for the analysis previously summarized in table 1. In the 

conventional urea CO2 Stripping process, the heat for Stripping is provided by medium pressure steam at 2.2 

MPa, supplied from a NG fired boiler. 

The results of the comparative quantitative analysis in terms of GHG emissions are summarized in Table 3. 

Table 3: Comparative analysis of GHG emissions between a conventional and improved AdBlue urea plant. 

Urea plant 

 

GHG for  

NH3 product. 

t CO2 eq./t urea 

GHG for 

NH3 transport 

t CO2 eq./t urea 

GHG for  

Process steam 

t CO2 eq./t urea 

GHG for 

Electric power 

t CO2 eq./t urea 

Overall GHG 

emissions 

t CO2 eq./t urea 

Absolute GHG 

emissions      

Mt CO2 eq./y 

Conventional 0.97 0 0.13 0.07 1.17 93.9 

Improved 0.05 0.17 0 0.17 0.39 31.3 

 -0.92 +0.17 -0.13 +0.10 -0.78 -62.6 
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To sum up, the improved AdBlue process can lower the overall GHG emissions (including the contribution of 

liquid ammonia transportation) of 0.78 t CO2 eq./t urea, compared with the conventional route. Which means, in 

terms of absolute emissions, a saving of more than 60 Mt CO2 eq./y. 

6. Conclusions 

In the next two decades, the demand of urea based de-NOx reduction agents is expected to increase very fast, 

motivated by the growing stringency of legislation on emissions of NOx gases. The forecast for the worldwide 

urea consumption as de-NOx reduction agents is 80 Mt/y within the year 2040. The adverse effect of GHG 

emissions, caused by the conventional industrial production of urea, can be significantly limited by the 

integration with existing large point emitters, such as cement and steel plants. This work is presenting an 

improved AdBlue urea process, where the CO2 is recovered from the flue gas of a typical cement plant, the 

ammonia is supplied by a mix (50%/50%) of blue and green sources, and the import of process steam is avoided 

by recovering the waste steam generated in the urea Reactor; within the year 2040, the improved process, 

despite the incremental demand of urea based de-NOx reduction agents, can lower the expected GHG 

emissions from 94 down to about 31 Mt CO2 eq./y, even including the carbon footprint due to ammonia 

transportation and assuming the required electric energy is fully generated by fossil fuels. 
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