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The recovery of solvents from waste solvent mixtures is important both from an economic and environmental 

point of view. In this work, the recovery of acetone from an aqueous mixture containing small amounts of organic

pollutants by batch distillation is studied. The organic pollutants are removed in a fore-cut, which is incinerated, 

but with a considerable loss of acetone. Acetone is obtained in the main cut, while the acetone content of the

still residue is reduced by taking an after-cut. The still residue is treated biologically as wastewater. The effects 

of the operational parameters (reflux ratios of the steps, stopping criterion of taking the fore-cut) on different

sustainability indicators are studied. These indicators include the profit of a batch, the specific energy demand,

the CO2 emission resulting from incineration and the generation of heating steam, wastewater generation and 

potential environmental impacts determined by the WAR algorithm. Based on the effects of the parameters, a 

new operational policy is proposed that has both a higher profit (by 60%) and lower environmental impacts (73% 

lower specific CO2 emission) compared to the base case. 

1. Introduction

Sustainability has become an increasingly important concept in recent years, driven by concerns over the

depletion of natural resources and the impact of industrial processes on the environment. The chemical industry, 

in particular, has come under scrutiny for its significant energy consumption and resource usage, which has led 

to a growing interest in sustainability concepts in this sector. In response, the development of sustainable

processes has become a priority for the chemical industry, with a focus on minimising energy demand and

reducing the potential environmental impact of operations (Klemeš et al., 2011). 

The use of specific, quantifiable sustainability metrics has become a key approach to evaluating and improving 

sustainability in the chemical industry. These metrics provide a framework for measuring and optimising 

sustainability outcomes, enabling companies to make informed decisions about their operations and develop 

more sustainable processes. The Center for Waste Reduction Technologies of the American Institute of 

Chemical Engineers and the Institution of Chemical Engineers proposed specific sustainability metrics (Figure 

1) that can be applied to evaluate the sustainability of chemical production processes (Demirel, 2013). 

Distillation is a method for separating liquid mixtures into their components based on differences in their 

volatilities. It is the one of the most frequently encountered separation methods in the chemical industry. 

However, it is a very energy-intensive process According to Kiss (2019), approximately 40% of the energy 

consumed by the chemical industry is attributed to distillation processes. Furthermore, the specific energy 

demand of the batch distillation (BD) processes is higher than that of continuous distillation. Therefore, reducing 

the energy demand of BD plays a crucial role in the sustainability of batch chemical processes. 

The regeneration of waste solvent mixtures is usually performed by BD. If a mixture is not treated, it must usually

be incinerated, and fresh solvent has to purchased. Thus, the recovery of solvents can be highly advantageous

from both economic and environmental perspectives. It helps to reduce operational costs and material intensity

while also minimizing waste and reducing the environmental impact of the process. Hence, waste solvent

treatment by BD has the potential to improve the sustainability of chemical processes. 

In this paper, the sustainability of acetone recovery from a waste solvent mixture by using BD is studied. Through 

a rigorous simulation, the effects of different operational parameters (reflux ratio of the steps, stopping criterion 
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of the fore-cut) are explored on several sustainability metrics, including specific energy demand, CO2 emission, 

wastewater generation, and other environmental impacts assessed by the WAR algorithm (Mallick et al., 1996). 

Moreover, the profit of one batch of the regeneration process is also evaluated. 

 

Figure 1: Sustainability concept and sustainability indicators. 

2. Methodology 

After the equilibrium conditions, the separation process and finally the calculation method is presented. 

2.1 Vapor-liquid-liquid equilibrium (VLLE) conditions 

In this work, acetone (C) was recovered from an aqueous waste solvent mixture by BD. The mixture contains 

small amounts of dichloromethane (DCM, A) and methyl tert-butyl ether (MTBE, B) as pollutants. The 

composition of the feed: 1 mass% A, 1% B, 49% C and 49% water (D). The purity requirements for the acetone 

product are: ≤0.1 mass% A, ≤0.1% B and ≤ 0.25% D. 

Table 1 shows the measured boiling points of the pure components and azeotropes, as well as the azeotropic 

compositions in the order of increasing boiling point. The components form three minimum-boiling (A-D 

(heteroazeotrope), B-C, B-D) and one maximum-boiling (A-B) binary azeotropes, as well as a ternary saddle 

azeotrope (A-B-C). The azeotropes A-B-C and A-B were not found in the literature, but their existence is 

indicated by the vapor-liquid equilibrium calculations. Moreover, both A and D form tangent azeotrope with C at 

high C concentrations where the relative volatilities αA,C and αC,D are near to 1.0. Both the A-D and B-D mixtures 

have limited miscibility, but only A and D form a heteroazeotrope according to the calculations. The presence of 

D considerably increases both αA,C and αB,C. 

The VLLE calculations were performed by UNIQUAC with binary interaction parameters taken from Nemeth et 

al. (2020) except for the binary mixtures of B (Table 2), which were either the built-in parameters of CHEMCAD 

or generated based on UNIFAC. 

2.2 Separation process 

The recovery of C was performed in a BD column with 25 theoretical trays (not including the reboiler and the 

condenser), operating at atmospheric pressure. The pressure drop of the column was 0.25 bar. The hold-up of 

the condenser was 45 dm3, that of the column 5 dm3/tray. The volume of the charge was 20 m3 (17,785.9 kg). 

The reboiler had a constant heat duty of Qr=1800 MJ/h, provided with low-pressure (4 bar) heating steam. The 

steps of the process were as follows: 

1. A and B were removed in a fore-cut, although with a considerable loss of C due to the existence of the B-C 

azeotrope. The fore-cut must be incinerated because of its impurity content. Taking of the fore-cut was finished 

when the B concentration of the instantaneous distillate decreases to a specified value: xD,B≤Cr. The reflux ratio 

of the step (R1) and Cr were operational parameters. 

2. High purity C was obtained as a main cut, but due to the C-D tangent azeotrope a relatively high reflux ratio 

(R2) was needed. The step was finished when the concentration of D in the main cut increased above 0.23% 

(to ensure that the maximum allowed value, 0.25% would not be surpassed). 

3. The C content of the still residue (wastewater) was decreased to the necessary extent (0.2%) for biological 

purification by taking an after-cut, which was aqueous C with a high C content and it could be recycled to a next 

batch of the process to reduce the loss of C. The operational parameter of the step was its reflux ratio (R3). 
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Table 1: The properties of the azeotropes formed by the components and the boiling points of the pure 

components (P= 1.013 bar) *P=1.0219 bar. #Calculated values 

Component/ 

Azeotrope 

Tbp (°C) Composition (mass%) 

A B C D 

A-D 38.8 99.6 - - 0.4 

A 40.0 100 - - - 

B-C* 51.1 - 58.6 41.4 - 

B-D 52.6 - 96 - 4 

A-B-C# 53.4 27 44 29 - 

B 55.2 - 100 - - 

A-B# 55.24 9.3 90.7 - - 

C 56.2 - - 100 - 

D 100 - - - 100 

Table 2: Binary interaction parameters of the mixtures of B 

Component 1 Component 2 U12-U22, cal/mol U21-U11, cal/mol Source 

A B -388.0172 376.2425 UNIFAC 

B C 381.1923 -169.8641 UNIFAC 

B D 914.722 100.342 Built-in 

In the base case, the values of all the three reflux ratios were 6.0, while Cr=0.1 mass%. This Cr value was equal 

to the maximum allowed B content of the main cut ensuring that the main cut would fulfill the purity requirements. 

2.3 Calculation method 

The process was modelled with the professional flow-sheet simulator CHEMCAD 7. The column was a 

Batchcolumn module (Unit 1 in Figure 2), the cuts were collected in Batch Tanks (Units 2-4), and a Stream 

Reference (Unit 6) was used to copy the data of the still residue to stream 6. 

Several sustainability indicators were determined. Additionally, a profit value was calculated to describe the 

economics of the process, which is defined as the value of the recovered acetone minus the cost of incineration 

of the fore-cut, the cost of the heating steam and that of the biological treatment of the still residue: 

𝑃 =  𝑝𝑝 ∙ 𝑚𝑝 − 𝑝𝑠 ∙
𝑄𝑟

𝜆𝑠
∙ 𝑡 − 𝑝𝑊 ∙ 𝑉𝑤 − 𝑝𝑖𝑛𝑐 ∙ 𝑚𝑓𝑐  (1) 

where p means price, m mass, t operation time, V volume and λ is latent heat of evaporation. Subscripts p, s, 

w, inc and fc represent the product, steam, wastewater treatment, incineration and fore-cut. The price of the C 

product (pp): 1391 $/t (Echemi, 2023). The price of low-pressure steam (ps): 99.16 $/t. The incineration price 

(pinc): 74.9 $/t with an additional 2.12 $/t charged for every 0.1% when the chloride content of the waste is larger 

than 0.2% (Wien Energie, 2021). The price of wastewater treatment (pw): 3.34 $/m3. 

The specific energy demand (SED, MJ/kg), an indicator related to energy intensity, was defined as the heating 

energy required per functional unit (FU), here, 1 kg of product with the specified purity : SED=Qr∙t/mp. 

The environmental impacts were expressed by multiple indicators, including the CO2 emissions of the process. 

The total CO2 emission (CO2,t, kg) is the sum of the emission resulting from fuel combustion used to generate 

the heating steam (CO2,HS, kg) and the one generated by the incineration of the fore-cut (CO2,inc, kg). CO2,HS 

was calculated by the method of Gadalla et al. (2005) assuming heavy oil as fuel. Stoichiometric equations of 

perfect combustion of the organic components of the fore-cut were used to estimate the CO2,inc. The specific 

CO2 emission (CO2,s, kg/kg) was determined as the mass of CO2 emitted per functional unit (CO2,t/mp). 

The still residue was very dilute aqueous solution of C and was considered as wastewater subsequently treated 

by biological purification. Both the total mass of the wastewater generated (mw) and specific wastewater 

generation (mws, kg/kg, mass of wastewater per FU) were used as indicators. 

The potential environmental impacts of the waste streams, which are the incinerated fore-cut and the 

wastewater, were described by using the WAR (WAste Reduction) algorithm (Mallick et al., 1996). The algorithm 

calculates impacts in six main categories: ozone depletion, global warming, smog formation, acidification, 

human toxicity and ecotoxicity. The normalised impact scores (NIS, imp/kg) of the components with potential 

environmental impact are multiplied with their mass. The impacts so obtained are then summed in each category 

for both streams to calculate the total potential environmental impact (PEIt, imp). The specific potential 

environmental impact (PEIs, imp/kg, impact per FU) was also calculated. 
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The components having a potential impact are CO2 and HCl in the incinerated fore-cut and C in the wastewater. 

The NIS values are given in Table 3 except for ozone depletion, whose value is zero for all components. HCl 

has the highest potential environmental impact per unit mass, while the values are similar for CO2 and C. All 

three components have nonzero NIS values in the toxicity categories, while only one of them is relevant for 

global warming (CO2), smog formation (C) and acidification (HCl). 

Table 3: Normalised impact scores (NIS, imp/kg) of CO2, HCl and acetone (C) (data from CHEMCAD). 

Component Impact category 

Global warming Smog formation Acidification Human toxicity Ecotoxicity 

CO2 3.17∙10-4 0 0 3.24∙10-5 0.0903 

HCl 0 0 0.858 0.0416 0.797 

C 0 0.0366 0 1.21∙10-4 0.0628 

First, the indicators presented were calculated for the base case, then sensitivity studies were performed to 

study the effect of the operational parameters (R1, R2, R3 and Cr) on the indicators. Only one parameters was 

varied at a time. Finally, a modified technology was suggested based on the results of the sensitivity studies. 

3. Results 

The most important results of the base case are presented in Table 4. C is produced with a recovery of 60.8%. 

It contained only traces of A and very low amount of B, and its D content is also acceptable. The fore-cut had a 

C concentration of 90.0% indicating that a high amount of C is lost in the cut. The process was economical, its 

specific CO2 emission and wastewater generation values were slightly higher than 1.5 kg/kg. 

Table 4: Results of the base case and the modified technology. 

Result Base case Modified operational policy Change, % 

mfc. kg 3,671 1,304 -64.5 

mp, kg 5,312 7,708 45.1 

 A B D A B D  

xp, mass% 0.000 0.007 0.232 0.000 0.038 0.236  

t, h 19.10 24.17 26.5 

P, $ 5,167 8,250 59.7 

SED, MJ/kg 6.47 5.64 -12.8 

CO2,s, kg/kg 1.614 0.433 -73.2 

mws, kg/kg 1.604 1.074 -33.0 

PEIs, imp/kg 0.209 0.0809 -61.3 

In the sensitivity studies, R1 was changed from 1 to 20, R2 from 5 to 10, R3 from 0.25 to 10, while Cr from 0.1% 

to 1.22%. Figure 2a shows the effect of the reflux ratios on the profit. As a function of R1, P increased 

monotonously since mfc decreased and mp increased strongly. Although, t also increased leading to an increase 

in steam cost, this was not enough to balance the increase of profit. The change in the cost of biological 

treatment was negligible. It is likely that at even higher R1 values, P either becomes constant or reaches a 

maximum due to mfc and mp becoming constant, but reflux ratios above 20 are very rarely applied in industrial 

practice. As a function of R2, P had a maximum at its base case value (R2=6.5). At lower R2 values, mp became 

very low, while at higher values, the increasing cost of steam led to a decrease in P. P decreased as a function 

of increasing R3 because of an increase in the amount of wastewater, but the change in P was not significant. 

On the increase of Cr, P increased (Figure 2b) since less fore-cut and more main cut was taken. It was not 

possible to increase Cr further than 1.22% since the B concentration in the main cut became higher than its 

maximal allowed value. 

SED did not change significantly as a function of R1 (Figure 2a), but it had a minimum at R1=4.5. This is explained 

by the fact that both mp and t increase in a similar degree on the increase of R1. As a function of R2, there was 

a minimum in SED at the base case value (R2=6). SED was virtually independent of R3. On the increase of Cr, 

SED decreased due to the increase of mp (Figure 2b). 

Although CO2,HS increased as R1 increased, CO2,inc decreased to a greater extent, leading to a reduction of the 

total CO2 emission. As mp also increased, CO2,s decreased on the increase of R1 (Figure 2e). By varying R2, 

only CO2,HS changed. Since t had a minimum at R2=5.5 so did CO2,t. CO2,s also showed a minimum but at 

R2=6.5. The CO2 emission was virtually independent of R3. On the increase of Cr, CO2,t decreased due to 

decreasing mfc. Thus, CO2,s also showed a decrease (Figure 2f). 
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Figure 2: The effect of operational parameters on selected indicators: a. reflux ratios on P, b. Cr on P, c. reflux 

ratios on SED, d. Cr on SED, e. reflux ratios on CO2,s, f. Cr on CO2,s 

As D was mostly removed in the still residue, the change of mw was limited. It increased slightly on the increase 

of R1 and R2; it was independent of Cr. Only R3 had a significant effect; its increase made mw higher. The change 

in mws was thus dominated by mp. mws decreased on the increase of all variables except R3. 

PEIt was determined by the fore-cut since less than 0.5% of the total impact comes from the wastewater. The 

most important impact was the ecotoxicity of CO2 but the acidification potential, human and ecotoxicity of HCl 

were also considerable. PEIt decreased on the increase of R1 and Cr and it was practically independent of R2 

and R3. Due to the determining influence of CO2,inc and mp, PEIs behaved similarly to CO2,s (except in the case 

of R2). It decreased on the increase of all variables except R3, which had no effect on it. 

Based on the results, changes were suggested to increase the profit and decrease SED and the values of the 

environmental indicators: R1 and Cr should be as high, R3 as low as possible, while R2 was selected as 6.5 

where CO2,s had a minimum and P was close to its maximum. The simulation was repeated with these values 

(Table 4). C was obtained with a recovery of 88.2%. The A content of the product was negligible; its B content 

was higher than in the base case, but below its maximal value. mfc was greatly reduced (by 65%) and thus mp 

increased (by 45%). t also increased but only to a lower extent (by 26%). Therefore, the profit increased by 60% 

and SED decreased by 13%. The reduced amount of fore-cut led to a decrease in CO2,t and PEIt, while a further 

decrease of CO2,s and PEIs (by 73 and 61%, respectively) was caused by the increase of mp. 

4. Conclusion 

The effects of varying the operational parameters (reflux ratios of the steps and stopping criterion of the fore-

cut (Cr)) on different sustainability indicators of a batch distillation solvent recovery process were studied. 
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Acetone (C) was recovered from an aqueous waste solvent mixture containing dichloromethane and methyl tert-

butyl ether, as well. The components form multiple azeotropes. The organic pollutants were removed in a fore-

cut with considerable loss of C. C was obtained as main cut, while wastewater was obtained as still residue after 

taking an after-cut. The fore-cut was incinerated, while the wastewater was sent to biological purification. 

The following indicators were studied: the profit of a batch (P), specific energy demand (SED), specific CO2 

emission (CO2,s) resulting from incineration and the generation of heating steam, specific wastewater generation 

(mws) and specific potential environmental impacts (PEIs) determined by the WAR algorithm. On the increase of 

the reflux ratio of the fore-cut (R1), P increased, SED hardly changed but had a minimum at 4.5, while CO2,s, 

mws and PEIs decreased. The increase of Cr made P higher and decreased the other indicators. As a function 

of the reflux ratio of the main cut (R2), P, SED and CO2,s had a maximum at 6.0, 6.0 and 6.5, respectively. Both 

mws and PEIs decreased on the increase of R2. The increase of the reflux ratio of the after-cut (R3) only had a 

significant effect on mws, increasing its value. Based on these results, a modified operational policy was 

proposed, which had a considerably (by 60%) higher profit and lower environmental impacts at the same time 

than the base case. The new policy’s CO2,s, mws and PEIs values were lower by 73, 33 and 61%, respectively. 

It must be noted that the new policy is not optimal with respect to any of the indicators, meaning that even further 

improvements would be possible in the indicators studied. 

Nomenclature

CO2,HS – CO2 emission of heating steam, kg

CO2,inc – CO2 emission of incineration, kg 

CO2,s – specific CO2 emission, kg/kg 

CO2,t – total CO2 emission, kg 

Cr – stopping criterion of the fore-cut, mass% 

mfc – mass of fore-cut, kg 

mp – mass of product (main cut), kg 

mw – mass of wastewater, kg 

mws – specific wastewater generation, kg/kg 

NIS – normalised impact score, imp/kg 

P – profit, $ 

pinc – price of incineration, $/t 

pp – price of product (acetone), $/t 

ps – price of heating steam, $/t 

pw – price of biological purification, $/m3 

PEIs – specific potential env. impact, imp/kg 

PEIt – total potential environmental impact, imp 

Qr – reboiler heat duty, MJ/h 

R1 – reflux ratio of fore-cut 

R2 – reflux ratio of main cut 

R3 – reflux ratio of after-cut 

SED – specific energy demand, MJ/kg 

t – duration of the process, h 

Tbp – boiling point, °C 

U12-U22 – binary interaction parameter, cal/mol 

U21-U11 – binary interaction parameter, cal/mol 

V – volume, m3 

xD,B – B concentration in distillate, mass% 

xp – product composition, mass% 

αA,C – relative of volatility of A and C 

αC,D – relative of volatility of C and D 
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