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The increasing amount of variables to be accounted for in chemical processes optimization and the need to 

have a systemic approach to include all the steps of the industrial production chain implies the exponential 

growth of the model equations to be solved at the same time. In fact, in order to have an optimal industrial 

system, the analysis should start from raw materials supply and include demand-side, process side and logistic 

from the meso- to the macro-scale perspective. Moreover, beside economics, environmental impact, flexibility 

and scheduling should be coupled in a multi-objective optimization loop. This approach results in a 

computational effort that is way higher than that required in the past for conventional process optimal design. 

Therefore, innovative computational strategies should be implemented in order to ease the optimization loop. 

During the last decade, surrogate modelling has seen renewed interest for this purpose in chemical process 

engineering and it has been widely used for feasibility analysis, optimization and optimal scheduling. In this 

preliminary study we exploit a surrogate modelling approach for costs and emissions calculation for a simple 

separation process. A distillation unit is simulated by means of ProSimPlus process simulator to retrieve a set 

of physical and economic data over the operating domain of interest. After that, the sampling strategy is selected 

according to the suggested standards and adopted to generate a surrogate modelling with a Response Surface 

Methodology approach by means of ALAMO software. The output variable of interest for this study have been 

identified as the unit costs and the emissions related to the energy consumption. Despite the complexity of 

chemical equilibrium in multistage units, the obtained results show good agreement with those generated by the 

phenomenological models with a computational time whose magnitude is two orders lower. In conclusion, this 

methodology is worth deeper studies in order to be exploited for more complex systems and have even more 

benefits with the increasing complexity of the case study when coupling more units in different configurations. 

1. Introduction 

During the last decade, the majority of the efforts in the research domain are focused on the improvement of 

computational performances and Artificial Intelligence in order to deal with the Big Data challenge. In chemical 

and process engineering one of the most established tool is surrogate modelling. The main advantage of this 

approach on chemical processes is due to the possibility to reduce the computational complexity of non-linear 

equations involved both in unit operations and in thermodynamic behaviour models as concerns the operations 

and simulation as well as the early feasibility analysis phase (Bhosekar and Ierapetritou, 2018). In the last years, 

several applications have been tested on process systems (McBride and Sundmacher, 2019), on the Demand-

Side management part (Di Pretoro et al., 2022a) as well as on process dynamics and control (Di Pretoro et al., 

2022b). Based on these studies, the main remark concerning the effectiveness of the modelling approach in 

almost all cases refers to the sampling strategies. In fact, the way the physical systems values are collected and 

the size of the dataset (Davis et. al, 2018) before the modelling step plays a critical role on the obtained model 

quality. A further enhancement of the model can also be obtained by including feasibility constraints during the 

Design of Experiment generation as recently proved by Zinare Mamo et al. (2023). One of the aspects that still 

lacks of research results in terms of data-driven modelling is that related to environmental impact and process 

emissions. That is why, in this work, we explore the possibility to model energy consumptions and related 
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emissions for non-trivial process unit operations such as distillation. In particular, both an ideal mixture case 

study and a more complex one will be analyzed by coupling simulation, coding and dedicated modelling 

commercial software in order to assess the performances of technologies that are already available on the 

market for the users. 

In the following sections, further details about the case study and the proposed methodology are respectively 

described and the obtained outcome is properly presented and commented to have a complete overview about 

advantages and inconveniences of the proposed approach.  

2. Case studies 

In this research work two case studies (cf Figure 1) of increasing complexity will be discussed in order to 

compare the same methodology under the perspective of different computational performances. 

Further details concerning operating parameters and product specifications are discussed in the corresponding 

subsections here below in order to provide a complete overview of the systems under analysis. 

           

Figure 1: a) Ideal mixture distillation column b) Non-ideal mixture distillation train 

2.1 Ideal mixture distillation 

The first case study is based on the example proposed by Di Pretoro et al. (2019) for the Butane–Pentane 

mixture separation. It is an ideal distillation operation whose main purpose is to obtain the two components at 

the desired purity. The light impurities traces are removed along with the distillate stream and the selected 

thermodynamic model is Soave–Redlich–Kwong. The feed stream properties, operating parameters and 

specifications are listed in detail in Table 1 while the specifications, both related to the bottom product stream, 

are butane molar fraction equal to 0.01786 and 0.97 pentane recovery ratio respectively. 

Table 1: Process and variable* parameters for the Butane-Pentane separation 

Variable Symbol Value Unit Min value Max value Discretization 

Pentane feed flowrate (hk)* F5 2.743 mol/s 2.469 3.017 0.1% 

Butane feed flowrate (lk)* F4 6.863 mol/s 6.177 7.549 0.1% 

Propane feed flowrate F3 0.053 mol/s    

Propylene feed flowrate F3= 0.055 mol/s    

Feed temperature FT Bubble K    

Feed pressure FP 15▪105 Pa    

Number of trays (feed) N 20 (10) /    

Column top pressure P 4▪105 Pa    

2.2 Non-ideal mixture distillation 

The second case study is based on the distillation train example proposed by Di Pretoro et al. (2020) for the 

non-ideal Acetone–Butanol–Ethanol and Water mixture. In particular, as discussed in the referred publication, 

the first column is the one affected by the most relevant perturbations in terms of operating conditions.  
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Therefore, this study will only focus on it to ease both the modelling and the analysis steps. For this example, 

the NRTL thermodynamic model was used to take into account non-ideal behaviour between water and 

alcohols. All related parameters are listed in Table 2 while the specifications for the n-Butanol product purity are 

0.99 mass fraction and 0.9604 recovery ratio. 

Table 2: Process and variable* parameters for the ABE/W mixture 

Variable Symbol Value Unit Min value Max value Discretization 

Acetone feed flowrate FA 12.030 mol/s    

n-Butanol feed flowrate* FB 61.328 mol/s 55.195 67.461 0.01% 

Ethanol feed flowrate FE 3.839 mol/s    

Water feed flowrate* FW 12.428 mol/s 11.185 13.671 0.01% 

Feed temperature FT2 361.26 K    

Feed pressure FP2 1.013▪105 Pa    

Number of trays (feed) N2 16 (10) /    

Column top pressure P2 1.013▪105 Pa    

3. Methodology 

3.1 Unit simulation and sampling 

The distillation units have been modelled in both cases by the standard distillation module available in ProSim 

process simulator over the entire uncertain domain by means of the sensitivity analysis tool. After each run, the 

obtained results were stored in a .csv file that is then imported in Matlab for the sampling step. However, before 

performing the DoE phase, the total energy consumption of the system is assessed and converted into the 

associated emissions. For this case study, the selected environmental impact indicator is the Global Warming 

Potential (GWP) whose unit is the kg-eqCO2. For the particular case of distillation units, its value is calculated 

according to the hypothesis and assumptions discussed in Gadalla et al. (2006) by means of the equations:  

𝐶𝑂2 = (
𝑄𝑓𝑢𝑒𝑙

𝑁𝐻𝑉
) ⋅ (

𝐶%

100
) ⋅ 𝛼 (1) 

𝑄𝑓𝑢𝑒𝑙 = (
𝑄𝑟𝑒𝑏

𝜆𝑠𝑡𝑒𝑎𝑚
) ⋅ (ℎ𝑠𝑡𝑒𝑎𝑚 − 419) ⋅ (

𝑇𝐹 − 𝑇0

𝑇𝐹 − 𝑇𝑆 
) (2) 

where 𝑄𝑓𝑢𝑒𝑙 and 𝑄𝑟𝑒𝑏 are the fuel and reboiler duties, 𝑁𝐻𝑉 is the fuel Net Heating Value, 𝐶% is the carbon 

content of the fuel, 𝛼 is the CO2-to-C molar mass ratio equal to 3.67, 𝜆𝑠𝑡𝑒𝑎𝑚 and ℎ𝑠𝑡𝑒𝑎𝑚 are the latent and 

sensitive enthalpy for steam referred to 419 kJ/kg at 100 °C and, finally, 𝑇𝐹, 𝑇𝑆 and 𝑇0 are respectively the flame, 

stack and standard temperature in K. Furthermore, the operating costs function associated with the energy 

consumption is assessed as well considering 7.78·106 €/kJ. 

The selected sampling approach for this work is the Latin Hypercube Sampling (LHS), conceived to have a 

reduced variance sample with a good space-filling capacity. A dedicated function is already present in Matlab 

for defined hyperspace size and overall number of points. The obtained sample is finally exported in a new .csv 

file that will be processed by the surrogate modelling software as discussed in the next subsection. 

3.2 ALAMO modeling 

The modeling step was performed via ALAMO (Automatic Learning of Algebraic MOdels) whose interface is 

shown in Figure 2 with a particular focus on the base functions selection window. ALAMO was developed in 

2014 by Cozad, Sahinidis and Miller, and its purpose is to address the problem of derivative-free optimization. 

To be more precise, it aims at generating the simplest and most accurate algebraic surrogate model of black-

box systems, for which an experimental set-up or a simulator is currently available. It is based on a three-step 

iterative process that, in the order, interrogates the initial DoE, creates a model by optimizing the coefficients of 

an eventually selected subset of simple basis functions among the available ones and making a linear 

combination of them and, finally, by updating the sample points where the model lacks of accuracy by means 

of an adaptive-sampling methodology based on derivative-free optimization solvers. Once the model is obtained, 

the resulting Response Surface function is then implemented in Matlab to perform the data analysis step and 

assess the quality of the obtained model with respect to function values that were not exploited for the previous 

modeling phase in order to have unbiased results. 

453



    

 

 

 

 

 

 

 

Figure 2: ALAMO software: Interface window for base functions selection 

In particular, the procedure was performed twice accounting, in the second case, for smaller subsamples as 

suggested by Zinare Mamo et al. (2023) in order to compare the two performances. The selected indicators for 

this study are the normalized Maximum Absolute Error (MAE) and mean absolute error (mae) expressed as a 

percentage. Moreover, the amount of variables, i.e. the amount of coefficients for the basis functions is reported 

as well in order to give an idea of the complexity of the resulting model. 

4. Results 

The modelling procedure has been then carried out according to the methodology discussed in the previous 

section. The obtained results are discussed in the following subsections according to the specific case study. 

4.1 Ideal mixture distillation 

The first case study was simulated and the related model derived. Due to the selected discretization accuracy, 

10201 runs were required to cover the entire domain of interest with an overall computational time (modelling 

phase included) of about 12 minutes. As expected, the most relevant parameter in terms of energy consumption 

and, thus, emissions is the reboiler duty. The phenomenological model behaviour and that obtained by 

Response Surface Methodology are compared in Figure 3. 

 

Figure 3: Reboiler duty emissions [kg-eq CO2] for ideal distillation a) simulation values b) surrogate model 

The first conclusion that can be drawn from these graphs is that the compliance between the simulation model 

and the surrogate one is almost complete. Energy consumption and emissions increase, as expected, almost 

linearly with the increasing of the overall system flowrates. A further confirmation about the quality of the model 

can be obtained by looking at the performance indicators resumed, for both case studies, in Table 3. 
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In general, the mae does not overcome the 1% value. The reboiler heat duty has the main impact on the CO2 

emissions and, thus, a higher wight on the average total duty value model. The amount of parameters is 

generally moving in the interval between 5 and 8 and the involved functions are mainly linear and quadratic. It 

is worth remarking that trigonometric base functions have been excluded since they could incur into aliasing 

effect and bias the model accuracy with respect to the data set. 

 

Figure 4:  OPEX comparison between surrogate model and simulation data 

Finally, for the Butane-Pentane column, the calculation for OPerating EXpenses was performed as well as 

shown in Figure 4 based on the subsets organization discussed in Zinare Mamo et al. (2023) ordered according 

to the distribution product rate, bottom pentane partial flowrate and reflux ratio. As it can be noticed, the second 

and the third parameters have a higher impact on the OPEX function due to their closer relationship with the 

energy duty and, thus, the operating expenses. Therefore, in a longer perspective, if the algorithm needs to be 

improved, these parameters are those worth better investigation. 

4.2 Non-ideal mixture distillation 

The same approach is then followed for the ABE/W mixture. The obtained results for emissions are presented 

in Figure 5 for a one subset approach. As it can be noticed, there is good agreement between the left and right 

graphs with some discrepancies on the borders. As it can be noticed, there is good agreement between the left 

and right graphs with some discrepancies on the borders. Duties and, thus, emissions are higher in the regions 

where the operating conditions are more severe, i.e. when flowrates are more relevant and in proximity of the 

distillation boundaries due to the fact that the separation is approaching the azeotropic species composition. 

          

Figure 5: Reboiler duty emissions [kgeq CO2] for non-ideal distillation a) simulation values b) surrogate model 
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Table 3: Performance indicators for the obtained models 

 Variable MAE [%] mae [%] n parameters subsets 

Case study #1 Reboiler heat duty 3.12 1.03 6  

 Condenser heat duty 2.28 0.85 5  

 Total heat duty 2.75 0.92 8  

  1.96 0.51 5 (avg) yes 

Case study #2 Reboiler heat duty 4.29 1.62 7  

 Condenser heat duty 3.19 1.27 4  

 Total heat duty 3.84 1.53 7  

  2.17 0.89 8 (avg) yes 

 

Also for this example, as reported in Table 3, the reboiler is the main part of the unit in terms of environmental 

impact, the mae is no lower than 2% for both the utilities and the use of subsets allows to further reduce these 

values below the 1%. 

5. Conclusions 

The presented research work explores the opportunity to predict energy consumption based unit operations 

emissions and related costs by means of surrogate modelling exploiting the Surface Response Methodology by 

means of the ALAMO software. The outcome of the proposed methodology on the distillation unit case study 

allows to accurately define the emissions of a distillation unit both for a simple thermodynamic unit operation 

and for a more complex one involving an azeotropic species over the operating domain of interest. 

Moreover, the partition of the domain into subsets allowed to further increase the model accuracy without 

relevant drawbacks affecting the computational performances. 

Based on this results, the surrogate modelling approach for emissions estimation is a tool worth further 

investigation in future research. Applications of particular interest could be more complex systems, such as 

distillation trains, as well as processes involving reactors or also power plants. 
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