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Negative emission technologies (NETs) support climate change mitigation by capturing carbon dioxide from the 
atmosphere for storage in a separate environmental compartment. NETs have multi-footprints that may 
negatively affect the environment and society if these technologies are implemented on large scales. The 
solution is implementing multiple technologies in NET portfolios at smaller scales for sustainability and risk 
reduction. However, computing optimal NET portfolios are challenged by uncertainties in the availability of 
resources that are difficult to predict precisely. This work implements a two-step approach to evaluating the 
robustness of NET portfolios. The first step is mathematical modeling to generate optimal and suboptimal 
solutions. The second step is subjecting the solutions to Monte Carlo simulation to evaluate the tradeoff between 
their cost and robustness against uncertain resource availability.  The two-step approach is demonstrated in a 
case study on NET portfolios. Results show the existence of suboptimal solutions with higher costs but are more 
robust compared to the optimal solution. The two-step approach identifies the solutions that will perform well 
under uncertainty, thus supporting climate change mitigation decision analysis. 

1. Introduction 
The latest Intergovernmental Panel on Climate Change (IPCC) report declares that negative emission 
technologies (NETs) are now required to counterbalance the hard-to-abate emissions, especially in the energy 
sector (IPCC, 2022). NETs work by capturing carbon dioxide from the atmosphere and transferring it into the 
soil, biomass, construction materials, or in geological storage (Fuss et al., 2018). Examples of the prevalent 
land-based NETs from the literature include the biological options, afforestation/reforestation (AR), bioenergy 
with carbon capture and storage (BECCS), soil carbon sequestration (SCS), and biochar (BC); and the 
geochemical/chemical options, enhanced weathering (EW) and direct air carbon capture and storage (DACCS). 
NETs are characterized by multi-footprints such as land, water, energy, and nutrients that may impact the 
environment negatively when implemented on large scales (Smith et al., 2016). To sustainably deliver the 
required gigaton scale of negative emissions at lower risks, NET portfolios with the optimum technology mix are 
needed (Fuss et al., 2018). In portfolio optimization models, multi-footprints and resource limits must be 
considered to ensure sustainability (Čuček et al., 2012). However, the supply of resources is often uncertain due 
to variations in their availabilities. To address this challenge, computing techniques support the optimization of 
NET portfolios under uncertainties (Tan et al., 2022).  
Currently, there are limited studies on NET portfolios and even fewer studies on evaluating the uncertainties in 
their deployment. A study employed post-optimization sensitivity analysis by varying the resource constraints in 
NET portfolios (Migo-Sumagang et al., 2021). Another study used fuzzy optimization to address both multi-
objectivity and uncertainties in resource constraints (Migo-Sumagang et al., 2022). Neutrosophic data 
envelopment analysis, which addresses both risks and uncertainties, was developed and applied to NETs 

(Tapia, 2021). The mentioned approaches use deterministic models and evaluate the epistemic uncertainties 
or the uncertainties due to the lack of knowledge of the system. However, stochastic uncertainties due to 
parameter variations are also present in NETs optimization (Aviso et al., 2019). For example, the variations in 
the fertilizer and energy supply in small-scale applications should also be considered to ensure the continuous 
operation of these technologies.  
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One approach is to generate optimal and suboptimal solutions during optimization, and then to further subject 
the solutions to Monte Carlo simulation (MCS) to check their robustness against parameter variations (Aviso et 
al., 2019). Since the optimal solution may be insufficient to address the problem as mathematical models do not 
represent the real world accurately, suboptimal solutions also need to be evaluated (Voll et al., 2015). The 
advantage of this approach is the identification of good solutions out of the suboptimal solutions that perform 
well despite the variations in the parameters (Aviso et al., 2019). This two-step approach has also been 
demonstrated in decarbonization portfolios, using process graphs (Tan et al., 2017) and mathematical modeling 

(Belmonte et al., 2020). So far, no studies have been found applying this two-step approach in NET portfolio 
modeling to assess the portfolios’ robustness against the variations in resource availabilities. The benefit of 
applying this two-step approach to NET portfolios is the identification of solutions that are more robust compared 
to the optimal solution.  
This work bridges the research gap by applying the two-step approach to NET portfolios. First, optimal and 
suboptimal solutions are generated through mathematical modeling. Next, the solutions are subjected to MCS, 
to test against varying resource availabilities. The second step identifies the solutions’ probability of failure, 
which occurs when there is one or more violations in the constraints, in this case, when one or more resources 
becomes unavailable. A case study on optimal and suboptimal NET portfolios illustrates the technique. The 
main contribution of this study is modeling and evaluating robust NET portfolios, which support decision-making 
in climate change mitigation. The rest of the paper is organized as follows. Section 2 presents the problem 
statement. Section 3 discusses the methodology used. Section 4 shows an illustrative case study. And Section 
5 gives the summary and conclusions of this work. 

2. Problem statement 
The formal problem can be stated as follows. Given a set of NETs i ∈ I (i = 1, 2, 3, … , N), and a set of resources 
j ∈ J (j = 1, 2, 3, … , R). Each resource j is characterized by its availability (Fj). Each NET i is characterized by its 
costs (Ci) and environmental footprints (Mij) for each resource j. The problem is to find the optimum negative 
emissions allocation (xi) of each NET i in a portfolio while minimizing the cost (C) and meeting the negative 
emissions target (G), resource constraints (Fj), upper (xiU), and lower (xiL) limits of NET potentials. It is also 
required to generate and select representative suboptimal solutions with configurations that are different from 
the optimal one. The performance of the optimal and representative suboptimal solutions against variations in 
resource availabilities is measured. The selection of the recommended portfolio is done after analyzing the 
performance of the optimal and representative suboptimal solutions.  

3. Methodology 
3.1 Optimization model 

The model is represented by Eq(1) to Eq(6). The objective function, which minimizes the total cost of the 
portfolio, is shown in Eq(1), while the constraints are given by Eq(2) to Eq(6). The negative emissions target is 
shown in Eq(2), and the resource constraint based on the evaluation of the footprints is given in Eq(3). Since 
NETs have limited potential, they are constrained by Eq(4) and Eq(5). In this work, the lower limit (xiL) is assumed 
to be zero, which means a technology may be excluded from the portfolio. A binary variable (bi) indicates 
whether a NET is selected (bi = 1) or not selected (bi = 0). The resulting model is a mixed integer linear 
programming (MILP) model, and the model is solved using an optimization software, LINGO 19.0 (LINDO, 
2020). 

min∑ Cixii   (1) 

∑ xii ≥ G  (2) 

∑ Mijxi ≤ Fji     , ∀j  (3) 

xi ≥ bixiL    , ∀i (4) 

xi ≤ bixiU     , ∀i (5) 

bi ∈ {0,1}  (6) 
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3.2 Generation of suboptimal solutions  

After solving the model and generating the optimal solution, the suboptimal solutions are further generated using 
integer-cut constraints (Voll et al., 2015). The method is described as follows. In the known solutions (k − 1), 
where i represents any solution, the binary variables bm

(i) represent the presence of stream m of the ith best 
solution. The streams are grouped into the sets, M1

(i) and M0
(i). The process streams in the ith best solution 

bm
(i) = 1 are depicted by M1

(i) such that M1
(i) = �m: bm

(i) = 1�, and the remaining streams bm
(i) = 0 are denoted by 

M0
(i) such that M0

(i) = �m: bm
(i) = 0� (Voll et al., 2015). 

The binary variables bm
(k) of the kth best solution in the (k − 1) known solutions can be constrained by Eq(7), 

such that the inclusion of this constraint in the model makes the previous solution infeasible and the optimization 
generates the next best or kth best solution (Voll et al., 2015). This method is applied to generate suboptimal 
solutions. Representative suboptimal solutions with different configurations are selected for further analysis.  

∑ �𝑏𝑏m
(i)
�
=1

− 𝑏𝑏m
(k)� + ∑ �𝑏𝑏m

(i)
�
=0

− 𝑏𝑏m
(k)�mϵM0

(i)mϵM1
(i) ≥ 1 ∀i i = 1, … k − 1 (7) 

3.3 Monte Carlo simulation 

The resulting optimal and suboptimal solutions are then subjected to MCS following the flowchart in Figure 1. 
Here, the model inputs refer to the resource constraints. First, the statistical properties of the model inputs, 
which are the probability distributions, are obtained. A random sample input is generated using the probability 
distribution of the model inputs. The sample input is used to calculate the model output in a simulation, and the 
result is recorded. The procedure is repeated until the number of iterations or simulations reaches a large 
number, in this case, 1,000. A network failure happens when one or more resource constraints are violated. The 
probability of failure P(F) is calculated by getting the percentage of the number of failed simulations divided by 
the total number of simulations specific to a resource. The overall P(F) is calculated by considering the failures 
in all the resources. The last step involves the analysis of the results, and the selection of the final solution for 
actual implementation based on the risk aversion of the decisionmaker. 
 

 
 

 
Figure 1: Monte Carlo Simulation (MCS) flowchart 

4. Case study 
The case study deals with an industry-scale application of a NET portfolio targeting a carbon dioxide removal of 
50 Mt CO₂/y. The technology options consist of BECCS, AR, SCS, BC, DACCS, and EW. For this industry, it is 
assumed that the maximum potential of each NET is shown in Table 1. The data on the NET environmental 
footprints and costs are presented in Table 1 based on published literature as first used in the case study of 
Migo-Sumagang et al. (2022).  

Table 1: NETs potential, environmental footprints, and cost 

NET Max potential 
(Mt CO₂/y) 

Land  
(Mha/Gt CO₂) 

Water  
(km³/Gt CO₂) 

RE  
(EJ/Gt CO₂) 

N  
(Mt/Gt CO₂) 

P  
(Mt/Gt CO₂) 

Cost  
(109 USD/Gt CO₂) 

BECCS 15 114 574 0.605 9.57 6.65 150 
AR 10 3 1575 0 0.11 0.13 27.5 
SCS 10 0 0 0 22 5.5 50 
BC 7.5 58 0 -35 8.2 2.7 75 
DACCS 15 0.14 4.42 14.7 0 0 200 
EW 20 85 1.5 6.4 0 0 125 
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Updated water footprints for BECCS and DACCS are used from a recent study (Rosa et al., 2021). It is assumed 
that the energy-consuming NETs would use renewable energy (RE), resulting in net negative emissions. The 
negative sign in the energy footprint of BC in Table 1 indicates energy production rather than consumption. 
The mean and standard deviation values of the resource availabilities for this industry are found in Table 2. All 
the resources except for land are expected to have variations in their availability. It is assumed that the 
availabilities are normally distributed with a standard deviation equivalent to 15 % of the mean value for nitrogen 
and phosphorous (in the form of fertilizers), 5 % for water, and 20 % for RE due to higher fluctuations in supply 
and demand in RE for this industry. The standard deviations were estimated based on the annual consumption 
of the resources in the Philippines (The World Bank, 2022).  

Table 2: Resource availability 

Resource Availability Unit 
Land 2.5 Mha/y 
Water 20 ± 1 km³/y 
Renewable Energy (RE) 1.2 ± 0.24 EJ/y 
Nitrogen (N) 0.3 ± 0.045 Mt/y 
Phosphorous (P) 0.3 ± 0.045 Mt/y 
 
Performing the model optimization and generation of suboptimal solutions in section 3 results in the optimal 
solution (rank 1) in Figure 2a and suboptimal solutions in Figures 2b to 2d, representing solution ranks 2, 4, and 
5, respectively. Solution rank 3 was excluded from the selection as it has a similar configuration to solution rank 
1 in terms of the selected NETs but varies according to the negative emissions allocation. All solutions achieved 
the negative emissions target of 50 Mt CO₂/y. Since the objective function minimizes the total cost of the 
portfolio, the suboptimal solutions expectedly result in higher costs. Each solution shows a different configuration 
with a different technology mix and different negative emission allocations for each NET (see Figure 2). 
Performing the MCS and calculating the probability of failure for each solution results in Table 3. 

Table 3: MCS results for the optimal and selected suboptimal solutions 

Solution Total Cost  
(109 USD) 

Probability of failure P(F) (%) 

  Water Renewable 
Energy 

Nitrogen Phosphorous  Overall 

Optimal (Rank 1)  4.25 0.2 0 48.4 0 48.5 
Suboptimal       
Rank 2 4.34 0 0 36.4 0 36.4 
Rank 4 5.28 0 0 3.7 0 3.7 
Rank 5 5.69 0.2 0 0 0 0.2 
 
Out of the four resources, the probability of failure is highest in nitrogen, indicating that this resource is the most 
binding. The probability of failure in water is minimal, while it is zero for renewable energy and phosphorous, 
indicating that these resources are more available for use in the NET portfolios. The optimal solution (rank 1) 
has an overall probability of failure equal to 48.5 %. In this solution, all six NETs are activated in the portfolio as 
shown in Figure 2a. Suboptimal solution rank 2 has a lower probability of failure (36.4 %) but is 2.1 % more 
costly than the optimal solution. Compared to the optimal solution, BECCS is deactivated and DACCS has a 
higher negative emissions allocation (2.5 Mt CO₂/y) in solution rank 2 (see Figure 2b). Suboptimal solution rank 
4 has an even lower probability of failure (3.7 %) but is 24.2 % more costly than the optimal solution. In this 
solution, both BECCS and BC are deactivated in the portfolio, and the DACCS allocation is higher (10 Mt CO₂/y) 
(see Figure 2c). Lastly, the suboptimal solution rank 5 has the lowest probability of failure (0.2 %) but is 33.9 % 
more costly than the optimal solution. In this solution, SCS, which has the highest nitrogen requirement, is 
deactivated as shown in Figure 2d.  
The results show that decreasing the allocation of the biologically based NETs, which require nitrogen, increases 
the robustness of the NET portfolio. However, this implies increasing the reliance on DACCS, which is currently 
the most expensive NET (USD 200/t CO₂). In all the solutions, EW and AR are consistently active and at their 
maximum potential. AR is the least costly NET (USD 27.5/t CO₂) and has the lowest nitrogen requirement 
among the biologically based NETs. EW, although one of the costliest NETs (USD 125/t CO₂), is less costly 
than DACCS and has zero nitrogen requirement.  
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The optimal and suboptimal solutions demonstrate the tradeoff between the cost and robustness of the 
solutions. Since the probability of failure depends on whether the solution is nitrogen-intensive, the 
decisionmaker may opt to find the “balance” between the nitrogen requirement of the solution while considering 
the impact on the cost. The decisionmaker may also consider the lowest probability of failure out of the 
representative solutions at the expense of a higher cost. 
 

  

  

Figure 2: Optimal and suboptimal solutions. Active NETs, or NETs selected in the portfolio are indicated in green 
while inactive NETs are indicated in grey. The numbers below the NETs show the negative emissions allocation 
for each technology. The numbers below the resources show the total consumption for each resource.  
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5. Conclusions 
This work implemented a two-step approach for generating and evaluating robust NET portfolios. The first step 
is mathematical modelling to generate optimal and suboptimal solutions. The second step is subjecting the 
solutions to MCS to evaluate their robustness under resource availability uncertainties. A case study using NETs 
reveals that the probability of failure of the solution is high depending on whether the solution is nitrogen-
intensive. Suboptimal solutions that perform well under uncertainty but have a higher cost exist. The 
decisionmaker may opt to find a balanced solution with a low probability of failure and acceptable cost. This 
work supports the decision analysis in implementing NET portfolios for climate change mitigation. It is 
recommended to consider multi-periods that extend well beyond into the future since NETs must be 
implemented throughout the century. Other stochastic techniques may further elucidate the robustness of NET 
portfolios. 

References 

Aviso, K.B., Ngo, J.P.S., Sy, C.L., Tan, R.R., 2019, Target-oriented robust optimization of emissions reduction 
measures with uncertain cost and performance, Clean Technologies and Environmental Policy, 21, 201–
212.  

Belmonte, B.A., Francis, M., Benjamin, D., Tan, R.R., Benjamin, M.F.D., Tan, R.R., 2020, Model-based 
synthesis and Monte Carlo simulation of biochar-based carbon management networks, Chapter In: J Ren, 
Y Wang, C He (Eds.), Towards Sustainable Chemical Processes, Elsevier, Amsterdam, Netherlands, 293-
307. 

Čuček, L., Klemeš, J.J., Kravanja, Z., 2012, A review of footprint analysis tools for monitoring impacts on 
sustainability, Journal of Cleaner Production, 34, 9–20.  

Fuss, S., Lamb, W.F., Callaghan, M.W., Hilaire, J., Creutzig, F., Amann, T., Beringer, T., De Oliveira Garcia, 
W., Hartmann, J., Khanna, T., Luderer, G., Nemet, G.F., Rogelj, J., Smith, P., Vicente, J.V., Wilcox, J., Del 
Mar Zamora Dominguez, M., Minx, J.C., 2018, Negative emissions - Part 2: Costs, potentials and side 
effects, Environmental Research Letters, 13, 063002.  

IPCC, 2022, Summary for Policymakers, In: Shukla, P.R., Skea, J., Slade, R., Al Khourdajie, A., van Diemen, 
R., McCollum, D., Pathak, M., Some, S., Vyas, P., Fradera, R., Belkacemi, M., Hasija, A., Lisboa, G., Luz, 
S., Malley, J. (Eds.), Climate Change 2022: Mitigation of Climate Change. Contribution of Working Group III 
to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University 
Press, Cambridge, UK and New York, NY, USA.  

LINDO, 2020, The modeling language and optimizer. LINDO Systems Inc. LINDO, Chicago, USA. 
Migo-Sumagang, M.V., Aviso, K., Tapia, J.F., Tan, R.R., 2021, A Superstructure Model for Integrated 

Deployment of Negative Emissions Technologies under Resource Constraints, Chemical Engineering 
Transactions, 88, 31–36.  

Migo-Sumagang, M.V., Tan, R.R., Tapia, J.F.D., Aviso, K.B., 2022, Fuzzy mixed-integer linear and quadratic 
programming models for planning negative emissions technologies portfolios with synergistic interactions, 
Cleaner Engineering and Technology, 9, 100507. 

Rosa, L., Sanchez, D.L., Realmonte, G., Baldocchi, D., D’Odorico, P., 2021, The water footprint of carbon 
capture and storage technologies, Renewable and Sustainable Energy Reviews, 138, 110511.  

Smith, P., Haszeldine, R.S., Smith, S.M., 2016, Preliminary assessment of the potential for, and limitations to, 
terrestrial negative emission technologies in the UK, Environmental Science: Processes and Impacts, 18, 
1400–1405.  

Tan, R.R., Aviso, K.B., Foo, D.C.Y., 2017, P-graph and Monte Carlo simulation approach to planning carbon 
management networks, Computers and Chemical Engineering, 106, 872–882.  

Tan, R.R., Aviso, K.B., Foo, D.C.Y., Migo-sumagang, M.V., Nair, P., Nair, S.B., Short, M., 2022, Computing 
optimal carbon dioxide removal portfolios, Nature Computational Science, 2, 465–466.  

Tapia, J.F.D., 2021, A risk-based decision support tool for selection and evaluation of negative emissions 
technologies, Chemical Engineering Transactions, 83, 97–102.  

The World Bank, 2022, Philippines Data <https://data.worldbank.org/country/philippines> accessed 27.04.2023. 
Voll, P., Jennings, M., Hennen, M., Shah, N., Bardow, A., 2015, The optimum is not enough: A near-optimal 

solution paradigm for energy systems synthesis, Energy, 82, 446–456.  

 

18


	0003.pdf
	Mathematical Modeling and Monte Carlo Simulation of Negative Emissions Technology Portfolios




