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This study utilized real-time urban data from Seoul to assess the impact of transportation mode choice on air 
pollution metrics. EXtreme Gradient Boosting (XGBoost), an ensemble model, was employed for air quality 
analysis. Subsequently, SHapley Additive exPlanations (SHAP), one of eXplainable Artificial Intelligence (XAI) 
techniques, was used to understand the influence of urban factors on air quality. For spatial coverage, 50 
locations with high traffic volume were selected, and the temporal coverage spanned from April 3, 2023, to April 
30, 2023. Variables related to traffic, the environment, and weather were established as features, while 
Comprehensive Air-quality Index (CAI), PM2.5, and PM10 were determined as target variables. As a result, 
Root Mean Squared Error (RMSE) of the models predicting CAI, PM2.5, and PM10 were calculated as 0.57, 
0.47, and 0.50. The study found that as the maximum number of pedestrians and the number of subway 
passengers alighting increased, the levels of CAI, PM2.5, and PM10 decreased. This indicates that the use of 
greener modes of transportation, such as walking and taking the subway, positively impacts air pollution 
reduction In addition, lower road traffic speeds were associated with higher PM2.5 levels, while increased road 
congestion correlated with higher PM10 levels. The observed increase in PM2.5 and PM10 levels in relation to 
the rise in passenger car traffic suggests that emissions from these vehicles are contributing to air pollution. 
Consequently, the study confirmed that traffic-related factors can influence air quality indicators, and that 
modifications to traffic volumes and modal splits can enhance air pollution control. This study provides a 
foundation for developing policies to improve air quality by quantifying and presenting various factors that impact 
air quality. 

1. Introduction 
In recent years, air pollution-related environmental and health issues have garnered significant global attention 
due to the detrimental effects they pose (Ku et al., 2021). High level of air pollution leads to poor air quality, 
causing a myriad of problems and escalating social costs (Colvile et al., 2001). The transportation sector, in 
particular, contributes heavily to air pollution, with this problem intensifying due to urbanization and population 
growth. The transportation sector is widely recognized as a major contributor to air pollutant emissions (Ku et 
al., 2020). Vehicles such as cars and buses emit harmful substances while burning fuel and traveling the roads, 
leading to the degradation of air quality (Ercan et al., 2022). Air pollutant emissions can vary widely, influenced 
by factors such as vehicle type, fuel used, and engine size (Van Fan et al., 2018). To reduce air pollution from 
the transportation sector, it is essential to accurately analyze the emissions of air pollutants by transportation 
and develop both technical and policy measures for improvement. Such analysis could provide valuable insights 
for effective air quality management and formulating efficient strategies to reduce air pollution. By gaining a 
deeper understanding of how different transportation modes affect air quality, more efficient measures can be 
derived to effectively control and reduce air pollution. Consequently, this study aims to investigate the variations 
in air pollutant emissions among different modes of transportation and assess their impact on air quality. The 
findings will aid in developing of policies and technologies that can reduce air pollution, ultimately contributing 
to the creation of healthier, more sustainable urban environments. 
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2. Methodology 
First, real-time urban data was collected using a web crawler. This preprocessed data was then used to train 
air quality prediction models and to evaluate their performance. Following XAI approach, the importance of 
features was measured, and influencing factors were analyzed. Figure 1 illustrates the flow of this study. 

 

Figure 1: Framework of study 

2.1 Real-time urban big data 

Seoul’s real-time urban data is available as an open Application Programming Interface (API), which implies 
that data can be collected without any access restrictions through the provided API. API facilitates the collection 
of real-time data as well as data that gets updated periodically (Lock et al., 2020). In this study, Python's 
schedule function was employed to collect data at regular intervals. The data provides real-time information on 
population, traffic, and environmental variables for 50 key locations in Seoul. To comprehend the impact of 
transportation-related air pollutant emissions, the data presented in Table 1 was collected. The data were 
collected in April, which is representative of the Korean climate during the year. The data spanned from April 3, 
2023, to April 30, 2023. 

Table 1:  Seoul real-time urban data 

Variable Explanation Property 
ID Place name Character 

Population density Location congestion indicator based on real-time pedestrian 
volume (0: smooth, 1: normal, 2: less crowded, 3: crowded) Factor 

Maximum pedestrian volumes Maximum of real-time pedestrian volume (person/5 min) Integer 
Minimum pedestrian volumes Minimum of real-time pedestrian volume (person/5 min) Integer 
Resident population rate Percentage of resident population (%) Float 

Traffic congestion Status of overall road communication (0: smooth, 1: slow,  
2: congestion) Factor 

Traffic speed Average speed of overall road communication (km/h) Integer 
Time Time of data generation Time 
Date Date of data generation Date 
Temperature Temperature (°C) Float 
Sensory temperature Sensory temperature (°C) Float 
Humidity Humidity (%) Integer 
Wind speed Wind speed (km/h) Float 
Precipitation Rainfall (mm) Float 
UV level UV Index levels Integer 
PM2.5 Ultra fine dust concentration (𝜇𝜇𝜇𝜇/𝑚𝑚3) Float 
PM10 Fine dust concentration (𝜇𝜇𝜇𝜇/𝑚𝑚3) Float 
CAI Comprehensive air-quality index Integer 
Subway passengers boarding Number of people getting on the subway (person/h) Integer 
Subway passengers alighting Number of people getting off the subway (person/h) Integer 
 

2.2 Ensemble model: XGBoost 

An ensemble model is a machine learning method that combines a number of individual models to generate 
stronger, more reliable predictions. Each model is trained independently, makes predictions, and then their 
results are combined to deliver a final prediction. Ensemble models can enhance predictive performance over 
individual models, and generally yield more stable and robust results. XGBoost is one such ensemble technique. 
It is a powerful and widely-used machine learning algorithm based on the boosting algorithm (Chen and Guestrin, 
2016). XGBoost is an evolution of the original gradient boosting algorithm that operates as a tree-based learning 
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algorithm. It takes advantage of Gradient Boosting while avoiding overfitting and increasing the generalization 
ability of the model. XGBoost provides a range of features and hyperparameters to fine-tune the performance 
and efficiency of the model. For instance, adjusting parameters such as tree depth, learning rate, number of 
trees, etc., allows for control over the model's complexity and generalization ability. One significant advantage 
of XGBoost is its ability to compute feature importance, enabling the evaluation and interpretation of the 
significance of variables. XGBoost can be applied to a diverse range of problems, demonstrating its strength in 
handling interactions between structured data and attributes. It is also efficient in terms of speed and 
performance, making it suitable for large datasets. The XGBoost model aggregates each individual tree model 
as shown in Eq(1) to take them all into account, and then generalizes them as shown in Eq(2). Ultimately, by 
setting the objective function as shown in Eq(3), the model's performance is enhanced via the model's 
regularization function to avoid overfitting. 

𝑌𝑌′ = 𝑎𝑎 ∗ 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝐴𝐴 + 𝑏𝑏 ∗ 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝐵𝐵 + 𝑐𝑐 ∗ 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝐶𝐶 + ⋯ (1) 

𝑌𝑌𝑖𝑖′ = �𝑓𝑓𝑘𝑘(𝑥𝑥𝑖𝑖), 𝑓𝑓𝑘𝑘

𝐾𝐾

𝑘𝑘=1

∈ 𝐹𝐹 (2) 

𝑜𝑜𝑏𝑏𝑜𝑜(𝜃𝜃) = �𝑙𝑙(𝑦𝑦𝑖𝑖 ,𝑦𝑦𝑖𝑖′) + �𝑜𝑜ℎ𝑚𝑚(𝑓𝑓𝑘𝑘)
𝐾𝐾

𝑘𝑘=1

𝑛𝑛

𝑖𝑖=1

 (3) 

Where 𝑦𝑦𝑖𝑖′ is the predicted score corresponding, 𝑓𝑓𝑘𝑘 is 𝑘𝑘 th decision tree ∈ function space 𝐹𝐹, 𝑙𝑙 is loss function, and 
𝑜𝑜ℎ𝑚𝑚 is regularization function. 
Lartey et al. (2021) used the XGBoost algorithm to predict hourly traffic volume efficiently and accurately. Sun 
et al. (2021) compared various models for predicting highway traffic flow and used the best-performing XGBoost 
algorithm to predict traffic flow. In the study, XGBoost was used to create a model to predict CAI, PM2.5, and 
PM10 to identify the amount of air pollutants caused by transportation. 

2.3 XAI: SHAP 

SHAP is a form of XAI used for interpreting and explaining the predictions of machine learning models. Derived 
from the game theory concept of Shapley values, SHAP concentrates on explaining the influence of each input 
feature on the predicted outcome (Lundberg and Lee, 2017). This methodology allows for the decomposition of 
the model's predictions into the contributions of each feature, assessing the significance of each one. This 
approach enables the identification of individual feature influences and provides explanations for the model's 
decisions. SHAP is based on the calculation of Shapley values, which measure the degree to which participants 
in a cooperative game contribute to the creation of some value. This concept is applied to the model's input 
features to estimate the extent of their contribution to the predicted outcome. SHAP provides a consistent 
interpretation, regardless of the model's complexity, and presents the input-output relationships of the model in 
an interpretable manner. This helps in understanding the model's predictions and facilitates confident decision-
making. In a SHAP model, the feature contribution is calculated by adding the difference between the prediction 
and the mean for the data, as shown in Eq(4). The precise Shapley value is then calculated using Monte-Carlo 
sampling using Eq(5). Finally, Eq(6) yields the feature importance. 

∅𝑠𝑠𝑚𝑚 = 𝑓𝑓(𝑥𝑥+𝑠𝑠𝑚𝑚 ) − 𝑓𝑓(𝑥𝑥−𝑠𝑠𝑚𝑚 ) (4) 

∅𝑠𝑠(𝑥𝑥) =
1
𝑀𝑀 � ∅𝑠𝑠𝑚𝑚

𝑀𝑀

𝑚𝑚=1

 (5) 

𝐼𝐼𝑠𝑠 = ��∅𝑠𝑠
(𝑖𝑖)�

𝑛𝑛

𝑖𝑖=1

 (6) 

Where ∅𝑠𝑠 is the contribution of the selected independent variable, ∅𝑠𝑠(𝑥𝑥) is the contribution of all variables, and 
𝐼𝐼𝑠𝑠 is the importance of the entire model. 
Yang et al. (2022) developed the XGBoost model by selecting variables from past traffic accident data and used 
SHAP values to analyze 11 influencing factors from perspectives of the road and environment. Barredo-Arrieta 
et al. (2019) used XAI techniques to quantify the impact of each independent variable on the target variable for 
deeper insights into traffic analysis and flow prediction. This study aimed to use these models to identify which 
independent variables have high feature importance and how they affect CAI, PM2.5, and PM10. 
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3. Results 
This section presents the results of the ensemble modeling and feature importance analysis conducted using 
SHAP to figure out the relationship between atmospheric environment and transportation. 

3.1 Results of air quality prediction 

Before training the model, the data was split into training and testing sets. Train-data spanned from April 3, 2023 
to April 23, 2023, and test-data from April 24, 2023 to April 30, 2023. By tuning the hyperparameters of the 
XGBoost model, numerous air quality prediction models were trained, with the best model selected by 
comparing prediction results. The detailed hyperparameters adjusted include the number of boosting stages 
(estimators), the learning rate (learning rate), the depth of the tree (max depth), the feature sampling rate for 
each tree (colsample), and the observed data sampling rate for each tree (subsample). After predicting test-
data using the optimal model, each model’s predictive performance was evaluated using R-squared and RMSE 
values. The R-squared value, ranging between 0 and 1, indicates similarity to the predicted value; the models 
predicting CAI, PM2.5, and PM10 yielded values of 0.57, 0.47, and 0.50. RMSE, an indicator that determines 
the average error considering the unit of the dependent variable, resulted in values of 8.83, 5.04, and 7.22 for 
the models predicting CAI, PM2.5, and PM10. Detailed hyperparameter information and performance evaluation 
results of each model are shown in Table 2. Figure 2 is a graph comparing the actual values of test-data with 
the predicted values from each model, with the x-axis representing observations and the y-axis representing the 
dependent variable. 

Table 2: Hyper parameters and evaluation metrics of each model 

Model Estimators Learning rate (%) Max depth Colsample (%) Subsample(%) R-squared (%) RMSE 
CAI 200 0.1 7 0.9 0.8 0.57 8.83 

PM25 200 0.1 7 0.8 0.9 0.47 5.04 
PM10 200 0.1 7 0.9 0.8 0.50 7.22 

 

 

Figure 2: Prediction results of (a) CAI model (b) PM2.5 model (c) PM10 model 

3.2 Influencing factor in air quality 

SHAP was used to analyze how each variable influenced model predictions. Figure 3 visualizes the distribution 
of Shapley values for all characteristics, with the upper variables having a greater absolute impact on the 
prediction of each dependent variable. The top six variables with the greatest impact on CAI were humidity, 
hour, UV level, temperature, sensory temperature, and subway passengers alighting. For PM2.5, they were 
hour, humidity, temperature, UV level, subway passengers alighting, and maximum pedestrian volumes. For 
PM10, they were humidity, hour, temperature, UV level, maximum pedestrian volumes, and sensory 
temperature. The graph also indicates that a red dot representing a high feature value contributed to an increase 
in the dependent variable value, while a blue dot representing a low feature value contributed to a decrease. All 
models predicting CAI, PM2.5, and PM10 yielded high predictions for the dependent variable when maximum 
pedestrian volumes were low, as the feature value tended to be red when the SHAP value of maximum 
pedestrian volumes was less than 0. The feature values of the PM2.5 and PM10 models tended to be red when 
the SHAP value of subway passengers alighting was less than 0, resulting in higher predictions for the 
dependent variable when the number of subway passengers alighting was low. In the same way, the PM2.5 
model predicted higher dependent variables when traffic speed was low, while the PM10 model predicted higher 
dependent variables when traffic congestion was high. 

(a) (b) (c) 
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Figure 3: Feature importance of (a) CAI model (b) PM2.5 model (c) PM10 model 

To specifically examine how transportation variables affect the dependent variables, the independent feature 
importance of each variable was confirmed in Figure 4. The SHAP value of CAI is lower than the dotted red line 
only when the maximum pedestrian volumes are more than 100,000. Conversely, the value is lower than the 
dotted red line only when the subway passengers alighting are less than 1,000. In other words, the air quality 
was mainly predicted as low when there were numerous pedestrians and alighting subway passengers, which 
aligns with the results of the overall interactive feature importance analysis discussed above. In addition, when 
checking the feature importance of population density in the PM2.5 and PM10 models, the dotted red line 
indicating the median of the SHAP value when the population density was 0 was significantly lower than the 
median of other population densities. It means that PM2.5 and PM10 were predicted as low when the population 
density was 0, meaning that the area was not congested. 

 

 

 

Figure 4: SHAP value for (a) Maximum pedestrian volumes of CAI model (b) Subway passengers alighting of 
CAI model (c) Population density of PM2.5 model (d) Population density of PM10 model 

(a) (b) (c) 

(a) (b) 

(c) (d) 
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4. Conclusions 

In this study, air quality was predicted by using a variety of variables created by preprocessing urban data 
collected in real-time. Subsequently, the SHAP method was used to understand how each variable impacts air 
quality. The analysis revealed that as the maximum number of pedestrians and the number of subway 
passengers alighting increased, meanwhile CAI, PM2.5, and PM10 levels decreased. This implies that use of 
green transportation, such as walking and subway, positively impacts air pollution reduction. Additionally, PM2.5 
was higher when the road speed was lower, and PM10 was higher when the road congestion level was higher. 
This suggests that as the traffic volume of passenger cars increases, PM2.5 and PM10 increase, indicating that 
emissions from passenger cars contribute to air pollution. Consequently, this study implies that mode choice of 
transportation can significantly affect air pollution levels. Based on these findings, they can provide a foundation 
for developing policies aimed at improving air quality by quantifying and presenting factors that influence it. For 
instance, it would be possible to analyze the effect on air pollution before and after implementing Transportation 
Demand Management (TDM) project, such as congestion pricing or low emission zones. Consequently, this 
could help in moving towards a sustainable city by influencing changes in traffic volumes and modal split. In 
further studies, a more accurate and robust air quality prediction model could be established by collecting more 
diverse control variables. In addition, a feedback cycle could be set up to understand mutual effects by not only 
analyzing the impact of transportation use on the atmospheric environment but also studying how weather 
conditions influence passengers' transportation choice behavior. 
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