

VOL. 106, 2023

DOI: 10.3303/CET23106119

Guest Editors: Jeng Shiun Lim, Nor Alafiza Yunus, Peck Loo Kiew, Hon Huin Chin Copyright © 2023, AIDIC Servizi S.r.l. ISBN 979-12-81206-05-2; ISSN 2283-9216

Photocatalytic CO₂ Reduction to Produce Cleaner Fuels Over Vanadium Aluminium Carbide (V₂AIC) Supported TiO₂ Composite

Muhammad Tahir

Chemical and Petroleum Engineering Department, College of Engineering, UAE University, P.O. Box 15551, United Arab Emirates.

muhammad.tahir@ uaeu.ac.ae

Photocatalytic reduction of CO₂ to produce cleaner fuels is a promising approach for climate action to achieve sustainable development goals. Herein, noble metal-free vanadium aluminium carbide (V₂AIC) MAX as cocatalysts with TiO₂ to construct 2D/0D V₂AIC/TiO₂ heterojunction for photocatalytic CO₂ reduction with water to produce CO and CH₄ has been investigated. Coupling V₂AIC with TiO₂ was beneficial in increasing visible light absorbance capacity and charge separation efficiency. Using 10 % V₂AIC/TiO₂ composite, the highest CO and CH₄ production of 522 and 78.3 µmol g⁻¹ h⁻¹ were achieved, which were much higher than using pristine TiO₂ samples. This significant enhancement in photocatalytic efficiency was due to good interface interaction with proficient charge carrier separation. The findings of this work would be beneficial for further investigation in the design and fabrication of noble metal-free composite materials for energy and environmental applications.

1. Introduction

Photocatalytic CO₂ reduction using a semiconductor and energy source (light) produces various chemicals and fuels such as methane, methanol, carbon monoxide, acetic acid, and formic acid. For these processes, various photocatalysts including TiO₂, CdS, ZnO, and WO₃ were explored. Due to its low-cost, strong photostability, and suitable redox potential, TiO₂ is one of the most extensively researched semiconductors (Wang et al., 2023). TiO₂ has a number of advantages, however, its photoactivity and selectivity are reduced because of charge carrier recombination (Ren et al., 2023). As a result, TiO₂ photoactivity can be enhanced by loading with metals and using low-cost materials to develop TiO₂-based composites (Beenish et al., 2018).

MAX materials with the general formula $M_{n+1}AX_n$, are made of three elements, transition metals (M element), elements of group III or IV (A element) and either C or N elements (X element), which have layered structures and compact sheets. Multiple researchers have become interested in them due to their numerous distinctive qualities, including strong conductivity, charge carrier transfer ability, inexpensive cost, and improved stability (Bai et al., 2022). In the past, titanium aluminium carbide (Ti₃AlC₂) MAX was put to the test in photocatalytic applications and found to be effective in reducing CO₂ levels. Another significant MAX that is based on multiple oxidation states is V₂AlC because vanadium possesses several oxidation states. This MAX has various distinguishing qualities, including a greater capacity to absorb visible light, superior electrical conductivity, and chemical and thermal stability (Presser et al., 2012). Previous V₂AlC/g-C₃N₄ was invested for photocatalytic water splitting, and higher hydrogen production was achieved (Tahir et al., 2021). As a result, V₂AlC can be further investigated for use as a photocatalyst and producing a V₂AlC/TiO₂ heterojunction would improve the effectiveness of CO₂ reduction to yield useful chemicals and fuels.

In this work, V₂AlC supported TiO₂ composite for photocatalytic CO₂ reduction in a fixed bed photoreactor has been investigated. The composites were synthesized using a facile sol-gel single step method to get good interface interaction between both the materials. The composites were analyzed using XRD, UV, visible, SEM, and PL characterization techniques. The composite found promising for selective CO₂ reduction to cleaner fuels with higher efficiency. The reaction mechanism was proposed based on findings of characterization and experimental results.

Paper Received: 4 August 2023; Revised: 06 September 2023; Accepted: 25 September 2023

Please cite this article as: Tahir M., 2023, Photocatalytic CO2 Reduction to Produce Cleaner Fuels Over Vanadium Aluminium Carbide (V2AIC) Supported TiO2 Composite, Chemical Engineering Transactions, 106, 709-714 DOI:10.3303/CET23106119

709

2. Experimental

2.1 Catalyst Synthesis

V₂AlC/TiO₂ composite was synthesized using the sol-gel method. Titanium sol was obtained by hydrolyzing TTIP (Titanium (IV) isopropoxide (Sigma Aldrich)) in acetic acid (1 M) using 10 mL of TTIP that was dissolved in 2-propanol, in accordance with a procedure reported previously (Tahir 2020). Typically, specific amount of V₂AlC MAX (10 weight %) dispersed in 2-propanol was added to the titanium solution after stirring for 4 h. The suspension was then stirred for 24 h before being overnight oven dried at 100 °C. The final product was ground before being calcined at 500 °C for two hours and was given name V₂AlC/TiO₂ composite.

2.2 Catalyst Characterization

The purity and crystal phase structures were studied using X-ray powder diffraction (XRD) on a Bruker Advance D8 diffractometer (Rigaku Smart Lab-Cu-K, =0.154178 nm). The morphology was obtained using scanning electron microscopy (SEM, JEOL 6010 PLUS/LA). Using a 325 nm laser, photoluminescence (PI) spectroscopy was carried out (HORIBA Scientific) to measure the charges separation efficiency in the composite material. The UV-visible diffuse reflectance absorbance spectra were obtained using Carry 100 Agilent UV-vis spectrophotometer (model # G9821A).

2.3 Photoactivity test

The photocatalytic CO_2 reduction experiments were conducted using fixed bed photoreactor system. The primary reactor chamber, cooling fans integrated with lamps, mass flow controllers (MFC), and an online system for product analysis are all parts of the photocatalytic system. A water saturator was combined with the reactor system, in which CO_2 was passed to carry water vapours. A 150 mg photocatalysts was dispersed in the reactor bottom surface. The feed mixture entered the reactor from the top, passed over the catalyst surface, and then exited the reactor from the bottom surface. A feed combination (CO_2 and H_2O) was constantly fed into the reactor at 20 mL/min for 30 min prior to the experimentation to saturate the catalyst surface. The gas products were analyzed using GC which was integrated with TCD and FID detectors. After regular intervals of 30 min, samples were injected into GC using a gas-tight syringe and production of CO and CH₄ was calculated using GC results. All the experiments were conducted at normal temperature and atmospheric pressure.

3. Results and discussion

3.1 Materials analysis

Figure 1 (a) shows XRD patterns of TiO₂, V₂AlC and V₂AlC/TiO₂ composite samples. The XRD spectra of V₂AlC MAX shows two main peaks with 2-theta of 13.46° and 41.16° associated to (0 0 2) and (1 0 3) facets of V₂AlC MAX, and similarly reported previously in the literature (Madi et al., 2022). The XRD of TiO₂ confirms successful synthesis of anatase phase and was in accordance with JCPDS Card No. 01-084-1285. In V₂AlC/TiO₂ composite, all the original peaks were appeared, which confirm successful synthesis.

The UV-visible analysis of TiO₂ and V₂AlC/TiO₂ composite has been demonstrated in Figure 1 (b). TiO₂ was used to measure light absorption in the UV-visible range with a band edge just below 400 nm. The band edge was shifted to the visible light region, above 400 nm, when V₂AlC was coupled with TiO₂ to produce V₂AlC/TiO₂ composite with greater visible light absorbance. This is because pure V₂AlC MAX demonstrates higher visible spectrum light absorption because of its dark hue and conductive properties (Zhao et al., 2022). The band gap energies were estimated for pure TiO₂ and V₂AlC/TiO₂ composites were 3.40 and 2.96 eV. Previously, the energy of the band gap increased from 3.14 to 3.22 eV when Ti₃AlC₂ was added to TiO₂ (Tahir et al., 2022). All of these findings show that V₂AlC has features of visible light absorption and significantly lowers the band gap energy of TiO₂.

Figure 1 (c) discusses the findings of charges separation of TiO₂ and V₂Al/TiO₂ through photoluminescence (PI) analysis. Because charge recombination occurs at a faster rate in pure TiO₂, it is evident that it has the highest PL intensity. Loading V₂AlC into TiO₂, PI intensity was significantly decreased. This is because, MAX has greater ability to conduct electrons what keeps charges from recombining in the V₂AlC/TiO₂ composite, lowering the PL intensity noticeably. In a recent study, V₂C MXene and g-C₃N₄ were coupled and the PL intensity was significantly reduced as a result of effective charge carrier separation (Tahir, 2023).

Figure 2 shows the morphology of TiO₂, V₂AlC and V₂AlC/TiO₂ composites. The morphology of TiO₂ is depicted in Figure 2(a), where spherical-shaped particles of uniform size can be seen. The morphology of V₂AlC/TiO₂ composite is depicted in Figure 2(b-c). To give their strong interface interaction, TiO₂ particles are evenly dispersed throughout the V₂AlC structure. Further research revealed that the constant stirring during the sol-gel process in the presence of alcohols caused the bulk structure of V₂AlC to exfoliate. V₂AlC sheets were

710

completely covered with TiO₂ particles, providing good interaction that would be useful to transport charges. Figure 2 (d) shows EDX spectra of V₂AIC/TiO₂ composite, in which all the elements are present.

Figure 1: (a) XRD patterns of TiO₂ and V₂AIC/TiO₂, (b) UV-visible diffuse reflectance spectra of TiO₂ and V₂AIC/TiO₂ and (c) PL analysis of TiO₂ and V₂AIC/TiO₂ samples.

Figure 2: SEM analysis of (a) TiO₂, (b-c) V₂AIC/TiO₂, (d) EDX plot of V₂AIC/TiO₂ composite.

3.2 Photocatalytic hydrogen production

Blank experiments were first carried out to make sure that all of the products were produced only from the CO_2 and not from organic residues in the composite photocatalyst. These quality control tests show that the photocatalyst or feed mixture, both of which are necessary for any photocatalysis process, were not used to produce the products. The performance of TiO₂ and V₂AlC/TiO₂ composite for photocatalytic CO₂ reduction to CO and CH₄ is shown in Figure 3.

Figure 3: Performance comparison of TiO₂ and V₂AlC-loaded TiO₂ for photocatalytic CO₂ reduction to CO and CH_4 in a fixed bed reactor.

Using both the materials, CO was identified as the main product with lower amount of CH₄ formation. Obviously, production of CO and CH₄ was continuous over the entire irradiation time. Using pure TiO₂, lower amount of CO (108 µmol) and CH₄ (8.76 µmol) were produced, which were due to charge carrier recombination. When 10 % V₂AlC was loaded with TiO₂, CO and CH₄ production was increased to 156.53 and 50.6 µmol, respectively was achieved. Typically, production of CH₄ increment was much higher compared to CO, which was evidently due to more production and separation of photoinduced charge carrier. V₂AlC has potential to increase light absorbance and preventing the recombination of charges, which was beneficial to promote photocatalytic efficiency.

Numerous studies that are currently available discuss the use of TiO₂ based photocatalyst for photocatalytic CO2 reduction to CO and CH4 under UV and visible light irradiations. The photocatalytic activity for the selective reduction of CO₂ was shown to be improved in prior studies using 2D Ti₃AlC₂ MAX supported TiO₂ (Tahir 2020). Similar to this, when the photocatalytic CO₂ reduction were investigated using V₂AIC loaded g-C₃N₄ composite, the production of CO was greatly increased due to effective charge carrier separation (Tahir et al., 2022). In a different experiment, $g-C_3N_4$ -loaded Ti₃C₂ was more effectively able to reduce CO₂ to CH₄ with high selectivity. In addition to improved light-harvesting ability, the greatly increased photoactivity was caused by improved CO₂ adsorption/activation (Hu et al., 2021). The performance of V2AIC/TiO2 for photocatalytic CO2 reduction in view of production rate and selectivity are summarized in Table 1. Using TiO₂ and V₂AlC/TiO₂, CO was obtained as the main product during photocatalytic CO₂ reduction with H₂O. The highest CO and CH₄ production rates of 522 and 78.3 µmol g⁻¹ h⁻¹, which was 1.45 and 2.68 folds higher for CO and CH₄ production than using pure TiO₂ samples. Similar to this, CO and CH₄ selectivity of 92.5 and 7.5 % over TiO₂, which was changes to 86.96 and 13.04 % when V₂AlC was coupled with TiO₂. This increase in CH₄ selectivity was due to more production and separation over V2AIC/TiO2 composite. Figure 4 shows photocatalytic CO2 reduction over a V2AIC/TiO2 composite for the production of CO, and CH₄. The photogenerated charges on the TiO₂ under light irradiation can combine again because of their short life time. However, effective photoinduced charge separation was achieved by creating a heterojunction between V₂AIC and TiO₂ (Majhi et al., 2023). The holes were used for water oxidation, whereas, electrons were used for CO₂ reduction to CO and CH₄. Due to the increased electrical conductivity of MAX-based materials, higher separation of charges with their lowest recombination over TiO2 can be achieved. The generation of CO was significantly higher than that of CH₄ because of the favourable reaction due to involving only two electrons, compared to eight electrons for CH₄ formation. Using V₂AIC/TiO₂ composite, production was CH4 was higher due to more production and separation of charge carriers.

Catalyst	Production rate (µmol g ⁻¹ h ⁻¹)		Selectivity (%)	
-	CO	CH ₄	CO	CH ₄
TiO ₂	360	29.2	92.50	7.50
10 % V ₂ AIC/TiO ₂	522	78.3	86.96	13.04

Table 1: Summary of yield rate and selectivity for CO and CH₄ production over TiO₂ and 10 % V₂AlC/TiO₂ composite in a fixed bed photoreactor

Figure 4: Schematic presentation of the proposed mechanism of V_2AIC/TiO_2 composite for photocatalytic CO_2 reduction to CO and CH₄ under UV-light irradiation.

4. Conclusions

The V₂AlC loaded TiO₂ composite was successfully synthesized suing sol-gel single step method. Higher light absorption and effective charge carrier separation during the photocatalytic process were responsible for increasing photocatalytic CO₂ reduction efficiency over V₂AlC/TiO₂ composite. CO and CH₄ were produced as the main products during CO₂ reduction with water in a fixed bed photoreactor. The CO was produced at a significantly higher rate compared to methane due to using TiO₂ as a catalyst, which is supportive to produce more CO. When V₂AlC was coupled with TiO₂, production of CH₄ was increased. It can be concluded that to increase photocatalytic efficiency, V₂AlC MAX can be utilized directly as a cocatalyst with semiconductor materials rather than being converted into MXene using hazardous acids. The results of this research offer hope for developing more effective, structured photocatalytic systems that can be applied to both energy and environmental applications.

Acknowledgments

United Arab Emirates University (UAEU) provided funding for this work through a SURE PLUS grant (Grant # G00004006).

References

- Bai J., Chen W., Shen R., Jiang Z., Zhang P., Liu W., Li X., 2022, Regulating interfacial morphology and chargecarrier utilization of Ti₃C₂ modified all-sulfide CdS/ZnIn₂S₄ S-scheme heterojunctions for effective photocatalytic H₂ evolution, Journal of Materials Science & Technology 112, 85-95.
- Beenish T., Tahir M., and Amin N.A.S., 2018, Photocatalytic CO₂-Hydrogen Conversion via RWGSR over Ni/TiO₂ Nanocatalyst Dispersed in Layered MMT Nanoclay, Chemial Engineering Transactions 63, 115-120.
- Hu J., Ding J., Zhong Q., 2021, Ultrathin 2D Ti₃C₂ MXene Co-catalyst anchored on porous g-C₃N₄ for enhanced photocatalytic CO₂ reduction under visible-light irradiation, Journal of Colloid and Interface Science 582(Pt B), 647-657.
- Madi M., Tahir M., 2022, Fabricating V₂AlC/g-C₃N₄ nanocomposite with MAX as electron moderator for promoting photocatalytic CO₂-CH₄ reforming to CO/H₂, International Journal of Energy Research, 7666-7685.
- Majhi S.M., Ali A., Greish Y.E., El-Maghraby H.F., Mahmoud S.T., 2023, V₂CT_x MXene-based hybrid sensor with high selectivity and ppb-level detection for acetone at room temperature, Scientific Reports 13(1), 3114.
- Presser V., Naguib M., Chaput L., Togo A., Hug G., Barsoum M.W., 2012, First-order Raman scattering of the MAX phases: Ti₂AlN, Ti₂AlC_{0.5}N_{0.5}, Ti₂AlC, (T_{i0.5}V_{0.5})₂AlC, V₂AlC, Ti₃AlC₂, and Ti₃GeC₂, Journal of Raman Spectroscopy, 43 (1), 168-172.
- Ren G., Wei Z., Li Z., Zhang X., Meng X., 2023, Fabrication of S-scheme hollow TiO₂@Bi₂MoO₆ composite for efficiently photocatalytic CO₂ reduction, Materials Today Chemistry, 27, 101260.
- Tahir B., Tahir M., Nawawi M.G.M., 2022, Highly stable honeycomb structured 2D/2D vanadium aluminum carbide MAX coupled g-C₃N₄ composite for stimulating photocatalytic CO₂ reduction to CO and CH₄ in a monolith photoreactor, Journal of Alloys and Compounds 927, 166908.
- Tahir M., 2020, Enhanced photocatalytic CO₂ reduction to fuels through bireforming of methane over structured 3D MAX Ti₃AlC₂/TiO₂ heterojunction in a monolith photoreactor, Journal of CO₂ Utilization 38, 99-112.
- Tahir M., 2023, Vanadium Carbide (V₂CT_x) MXene-Supported Exfoliated g-C₃N₄ with the Role of Hole Scavenger as a Rapid Electron Transfer Channel for Enhancing Photocatalytic CO₂ Reduction to CO and CH₄, Energy & Fuels 37(14), 10615-10630.
- Wang Y., He W., Xiong J., Tang Z., Wei Y., Wang X., Xu H., Zhang X., Zhao Z., Liu J., 2023, MIL-68 (In)-derived In₂O₃@TiO₂ S-scheme heterojunction with hierarchical hollow structure for selective photoconversion of CO₂ to hydrocarbon fuels, Fuel 331.
- Zhao R., Liu J., Nie Y., Wang H., 2022, Bismuth oxide modified V₂C MXene as a Schottky catalyst with enhanced photocatalytic oxidation for photo-denitration activities, Environmental Technologies, 1-12.

714