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Freezing point (TF) is the temperature at which a liquid substance turns into a solid when cooled and this can 
be determined experimentally or by modelling. For aviation fuels, the freezing point test is relevant as impeding 
fuel flow may have disastrous results on planes, such as interference with fuel atomization. The freezing point 
of jet fuel can negatively be affected due to certain components found in the fuel as blend. In this study, a 
modelling method called Group Contribution method (GC) is used to predict the freezing point of jet fuel. The 
GC approach was tested and verified using different chemical data set. This research consisted of predicting 
the freezing point of 232 compounds using the first order-groups, second order-groups and third order-groups 
identified from the molecular structure and proving the validity of the model using 20 test data set of compounds. 
The regression using linear regression curve fitting using MATLAB was performed to obtain the contribution 
values for each group. The statistical analysis giving a standard deviation (SD) of 22.22 K, an average absolute 
error (AAE) of 15.62 K, an average relative error (ARE) of 7.23 % and a correlation coefficient, R2 of 0.8829. 
The model was tested and verified to be an appropriate method to predict the freezing point of jet fuel liquid 
compounds. 

1. Introduction
Jet fuel, derived from hydrocarbon sources and organic chemicals, is commonly used in aviation engines, and 
consists of formulated refined products from crude oil and organic compounds. Its properties, such as boiling 
point, freezing point, melting point, viscosity, density, and heat of combustion, must be considered to avoid 
hazardous effects on the engine (Chevron Corporation, 2006). High-density jet fuel with lower temperatures is 
more suitable for higher altitude applications. Isomerization of tetrahyrodicyclopentadiene and 
tetrahyrotricyclopentadiene, can reduce the freezing point and high viscosity of high-density fuels (Nie et al., 
2021). Duong et al. (2016) measured the freezing point of mixtures (soap-derived biokerosene (SBK)/ 
butylcyclohexane, dodecane/ butylcyclohexane, and dodecane/ butylbenzene) using the JIS K2276 test 
method. The finding from their study showed that the freezing point of butylcyclohexane+SBK and 
butylcyclohexane+ dedocane are having a freezing points in a range of  – 5 °C to – 20 °C, which is out of the 
target range of the jet fuel standard.  According to the ASTM D1655 standard, the commercial kerosine type jet 
fuel (Jet A1) must has the maximum freezing point of – 47 °C. Experimentally determining the properties of fluid 
substances is time-consuming, expensive, or not feasible due to thermal decomposition issues and in product 
design aspect, the potential chemicals might not be commercially available. Freezing point of organic 
compounds are also challenging to measure experimentally due to their thermal lability and difficulty in 
measuring critical properties. The physico-chemical property of a compound can be predicted if a reliable model 
is available and suitable to be applied for the system or selected compounds. 
Yunus et al. (2022) performed a study on green jet fuel blend using waste cooking oil to identify a reliable model 
for freezing point and flash point of jet fuel blend. Their study utilised the derived models for jet fuel blend 
freezing point property prediction obtained from literature (AlMulla and Albahri, 2017). Their results on the green 
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jet fuel blended with the commercial aviation fuel, Jet A1 fuel that met with the ASTM standard. Yarveicy et al. 
(2014) provided a least square support vector machine (LSSVM) prediction model to calculate the freezing point 
depression of different electrolyte solutions. The model was compared with the CPA (cubic-plus-association) 
Equation of State (EoS) combined with the Debye-Hückel electrostatic term. The model was accurate with R2 
0.9992 while CPA-EoS has a slightly higher absolute deviation (0.02 – 0.75) compared to LSSVM model (0.01 
– 0.50). The model however requires a computational extensive for the machine learning task and applicable 
for range of trained electrolyte solutions. Alonso et al. (2011) utilised excess Gibbs energy model for predicting 
the freezing point of multicomponent mixture. Their model focussing on the electrolyte and non-electrolytes for 
food applications. Gharagheizi et al. (2014) has done the prediction for freezing point of 17,000 organic 
compound using group contribution model. Their model utilised simple molecule structures and substructures 
to predict the freezing point which resulting a squared correlation coefficient of 0.735. Another study for 
estimation of freezing point using group contribution method was conducted by Lazzús (2016) which focusing 
on ionic liquid. The models involved cation and anion groups with a correlation coefficient R2 0.9138.  
Marerro and Gani (2001) introduced a group contribution (GC) method to estimate the properties of pure 
compounds using three level of groups, from simple groups (1st order) to the higher order groups involved 
polyfunctional and structural groups (2nd and 3rd order). They successfully demonstrate the methods for 
prediction of normal boiling point, critical temperature, critical volume, critical pressure, standard enthalpy of 
vaporization, standard enthalpy of formation, standard Gibbs energy, normal melting point and standard 
enthalpy of fusion. Later, Hukkerikar et al. (2012) introduced the GC+ method by combining the GC and atom 
connectivity index (CI) for 18 pure component properties including boiling point, melting point, flash point, etc. 
Frutiger et al. (2016) demonstrate the group contribution approach for estimation of flamibility-related properties 
such as Lower and Upper Flammability Limits (LFL and UFL), Flash Point (FP) and Auto Ignition Temperature 
(AIT). The method proves that it can be used for property prediction with R2 values within a range of 0.72 – 0.99. 
Yunus and Zahari (2017) applied the same approach to estimate the heat of combustion for fuel, and Kashinath 
et al. (2020) extend the method for cetane number prediction. Therefore, a reliable estimation model is needed 
to determine the freezing point property of fuel components or any substances. GC method can provide quick 
estimation with less computational effort. Due to that reason, the GC approach introduced by Marerro and Gani 
(2001) were utilized to develop the freezing point model. The aim of this study is to develop a model for the 
prediction of freezing point of jet fuel by using the group contribution approach.  

2. Methodology 
2.1 Data collection 

A good quality data used for the property model estimation is very vital to ensure the accuracy and reliability of 
the model. It is therefore very important to select a reliable database for model development. This database 
contains compounds from common families that are suitable as jet fuel such as hydrocarbon, alcohol, acid, 
ether, aromatic and also polyfunctional compounds. About 252 molecules with freezing point values were 
collected from literature (Yaws, 1999), which divided into 232 training data set and 20 test set. These molecules 
were broken down into three level of groups (1st, 2nd and 3rd order groups) based on the listed group in Marrero 
and Gani (2001). The frequency of each group appear in the molecule was counted. For the first order, the 
group -CH2 frequency is 278 times, -CH3, 233 times, aCH 105 times, -OH 85 times, -CH2cyc 71 times, -CH 44 
times, CH2O 26 times, -COOH 25 times, CH3O, -Br, -Cl are 17 times, CH3COO 16 times, aC-CH3 14 times, ac-
OH, CH2COO are 10 times, and other groups are less than 10.  For the functional groups that are appeared 
frequently such as aromatic aCH, alcohol -OH, ether CH2O, acid COOH, and ester -CH3COO has high tendency 
to provide more accurate result. For group that appear once might have high relative error in the prediction. 

2.2 Property function selection 

The selection of a suitable function for the freezing point prediction is important to ensure it best fit the 
experimental data and postulate a reliable prediction capability. The selection was performed based on the trend 
of the freezing point data and occurrences of CH2 groups that shows a linear relationship, hence the freezing 
point model is represented as Eq(1).  

𝑇𝑇𝐹𝐹 − 𝑇𝑇𝐹𝐹𝐹𝐹 = �𝑁𝑁𝑖𝑖𝑇𝑇𝐹𝐹1𝑖𝑖 + 𝑤𝑤�𝑀𝑀𝑗𝑗𝑇𝑇𝐹𝐹2𝑗𝑗 + 𝑧𝑧�𝑂𝑂𝑘𝑘𝑇𝑇𝐹𝐹3𝑘𝑘 (1) 

where, TF is the predicted freezing point, TFo is the universal constant, Ni, Mj and Ok are the occurrences, TF1i, 
TF2j and TF3k are the freezing point contributions for the first, second and third order groups. Similar function was 
observed for the critical volume, standard Gibbs energy, standard enthalpy of formation and standard enthalpy 
of formation from study by Marrero and Gani (2001). 
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2.4 Parameter regression 

The parameter regression was done using the least-square regression method with the goal of minimizing the 
sum of squares representing the disparities between the experimental and estimated values of the freezing 
point. The parameter regression for freezing point contributions TF1i, TF2j and TF3k was carried out in three stages. 
The first stage was to determine the TF1i and TFo values where w and z were set as zero.  The first stage results 
were used for the second stage to determine the second order contribution, TF2j. The last stage was to determine 
the contributions for the third order group, TF3j by utilising the results from the first and the second stage.  

2.4 Statistical analysis 

The statistical analysis was done by evaluating the standard deviation (SD), the average absolute error (AAE), 
and the average relative error (ARE) using Eq(2) to Eq(4). These parameters are important where AAE 
measures the average of the errors’ magnitude between the predicted and actual values. Meanwhile, ARE is 
the ratio of the absolute error of the measurement to the actual measurement. ARE can determine the magnitude 
of the absolute error in terms of the actual size of the measurement.  

𝑆𝑆𝑆𝑆 =  �
∑(𝑋𝑋𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝−𝑋𝑋𝑝𝑝𝑒𝑒𝑝𝑝)2

𝑁𝑁
      

(2) 

𝐴𝐴𝐴𝐴𝐴𝐴 =  1
𝑁𝑁
∑ �(𝑋𝑋𝑗𝑗

𝑒𝑒𝑒𝑒𝑒𝑒 − 𝑋𝑋𝑗𝑗
𝑒𝑒𝑝𝑝𝑒𝑒𝑝𝑝)�𝑗𝑗     (3) 

𝐴𝐴𝐴𝐴𝐴𝐴 =  1
𝑁𝑁
∑

�(𝑋𝑋𝑗𝑗
𝑝𝑝𝑒𝑒𝑝𝑝−𝑋𝑋𝑗𝑗

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝)�

𝑋𝑋𝑗𝑗
𝑝𝑝𝑒𝑒𝑝𝑝𝑗𝑗 × 100   

(4) 

where Xpred represents the predicted freezing point, Xexp is the experimental value of freezing point and N is the 
number of compounds.  

2.5 Model validation 

The freezing point prediction model is verified using test data set of 20 chemicals. These chemicals were 
selected from the collected data and separated from the training data set used in the regression. The obtained 
contributions were used to predict the freezing point and compared with the experimental TF value. It is to 
validate the accuracy of the model in estimating the freezing point of a chemical in jet fuel.  

3. Results and discussion 
The result of regression is tabulated in Table 1 (first order group), Table 2 (second order group) and Table 3 
(third order group). Based on the collected data set, Table 1 shows only 81 out of 220 groups from the first order 
having the estimated contribution, while 40 out of 130 groups from the second order (Table 2) and five (5) out 
of 74 groups from the third order groups. The comparison on the predicted and experimental freezing point from 
the regression of training data set is given in Figure 1a, considering all three levels of group that gave R2 value 
of 0.8829. The testing dataset is shown in Figure 1b with R2 value of 0.8384. 
 

   

Figure 1: Predicted vs experimental freezing point a) using training data and b) testing data set 
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Table 1: First order group and their contribution 

No. Group Tf1i No. Group Tf1i No. Group Tf1i 
1 CH3 -25.1779 28 CH2COO 37.4507 55 -Br 13.0571 
2 CH2 6.4107 29 CHCOO 64.3918 56 -F -32.9191 
3 CH 19.7042 30 CCOO 62.0679 57 -Cl -15.4623 
4 C 111.7097 31 HCOO 9.4082 58 OCH2CH2OH 7.3985 
5 CH2=CH -37.1819 32 aC-COO 77.3272 59 OCHCH2OH 49.5052 
6 CH=CH 46.5267 33 COO 41.5902 60 -O-OH 29.4213 
7 CH2=C 10.0609 34 CH3O -11.5888 61 CH2SH 89.2957 
8 CH=C 4.2740 35 CH2O 16.1671 62 -SH -55.0482 
9 C=C 0.0000 36 CH-O 65.4424 63 SO 152.4181 
10 CH2=C=C 20.6231 37 C-O 44.3680 64 SO2 138.1115 
11 CH#C 62.0679 38 aC-O -0.5076 65 SO4 102.2294 
12 C#C 92.0236 39 aC-NH2 4.5858 66 C2H3O -24.9888 
13 aCH 14.8347 40 NH2 72.1454 67 CH2cyc 2.5637 
14 aC*  -4.4161 41 CH2CN 13.0242 68 CHcyc 44.3950 
15 aC♦  3.0983 42 aC-CN -2.2164 69 Ccyc 102.9660 
16 aC-CH3 8.1605 43 aC-NO2 47.1468 70 CH=CHcyc 0.8458 
17 aC-CH2 -7.0135 44 NO2 80.7040 71 CH=Ccyc 16.2655 
18 aC-C 129.9025 45 ONO 92.2338 72 C=Ccyc 33.5817 
19 OH 18.3884 46 ONO2 22.0485 73 CH2=Ccyc -22.7888 
20 aC-OH 67.8606 47 CH2Cl 24.2134 74 N 114.7331 
21 COOH 84.8248 48 CHCl2 39.4513 75 O 27.3682 
22 aC-COOH 10.5701 49 CCl3 32.8257 76 CO 70.7432 
23 CH3CO 16.5265 50 CHF2 -2.6939 77 S 39.7681 
24 CH2CO 92.7778 51 CF3 -16.1656 78 -O- 57.1131 
25 aC-CO 54.6865 52 aC-Cl -34.5119 79 >CO 13.7810 
26 CHO 14.4579 53 aC-Br -20.1533 80 SiO 82.9783 
27 CH3COO 23.2407 54 -I 77.0727 81 Si 82.9783 

* fused with aromatic ring; ♦ fused with non-aromatic subring 

Table 2: Second Order group and their contribution 

No. Group Tf2i No. Group Tf2i 
1 (CH3)2CH -3.9378 21 CHm=CHn-Cl (m,n in 0..2) -1.8693 

2 (CH3)3C 4.9434 22 CHn=CHm-COO-CHp (m,n,p in 
0..3) 

3.1759 

3 CH(CH3)CH(CH3) 1.6353 23 CHm=CHn-CHO (m,n in 0..2) -23.5336 

4 CHn=CHm-CHp=CHk 
(k,m,n,p in 0..2) 

-20.7850 24 CHm=CHn-COOH (m,n in 0..2) -5.7567 

5 CH3-CHm=CHn (m,n in 
0..2) 

11.0241 25 aC-CHn-OH (n in 1..2) 40.8054 

6 CH2-CHm=CHn (m,n in 
0..2) 

3.4341 26 aC-C(CH3)3 -2.7346 

7 CHCHO or CCHO -0.6462 27 (CHn=C)cyc-CH2 (n in 0..2) -0.0995 
8 CH3COCH2 -0.5950 28 CHcyc-CH3 16.7442 
9 CH3COCH or CH3COC 48.2536 29 CHcyc-CH2 -22.4256 
10 CHCOOH or CCOOH 4.9168 30 CHcyc-CH 3.1336 
11 CH3COOCH or CH3COOC 1.3490 31 CHcyc-OH 3.5546 
12 CHOH 2.6454 32 CHcyc-O- -22.8164 
13 COH -18.2048 33 Ccyc-CH3 27.5261 

14 CHm(OH)CHn(OH) (m,n in 
0..2) 

-3.0807 34 Ccyc-OH 27.5261 

15 CH3-O-CHn-COOH (n in 
1..2) 

65.5527 35 AROMRINGs1s2 14.3212 

16 COO-CHn-CHm-OOC (n, m 
in 1..2) 

-6.4909 36 AROMRINGs1s3 -14.9894 

17 NC-CHn-COO (n in 1..2) -30.9616 37 AROMRINGs1s4 3.3874 
18 COCHnCOO (n in 1..2) 10.1911 38 AROMRINGs1s2s3 1.7249 

19 CHm-O-CHn=CHp (m,n,p in 
0..3) 

16.6820 39 AROMRINGs1s2s4 30.8010 

20 CHm=CHn-F (m,n in 0..2) -5.8217 40 AROMRINGs1s3s5 18.5555 
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Table 3: Third Order group and their contribution 

No. Group Tf3i No. Group Tf3i 

1 HOOC-(CHn)m-COOH 
(m>2, n in 0..2) 

-31.4978 3 AROM.FUSED[2] 29.1004 

2 OH-(CHn)m-OH (m>2, n in 
0..2) 

-2.6847 4 AROM.FUSED[2]s1 -29.0480 

   5 N multiring 0.0418 
 
The goodness of fit for the linear model was calculated based on the coefficient of determination (R2) and 
standard deviation (SD). The accuracy of the model can be evaluated from the average absolute error (AAE), 
the average relative error (ARE) as presented in Table 4. The first order groups regression resulting an R2 value 
of 0.8538. The R2 value was improved to 0.8782 when considering the second order, and slightly better at 
0.8829 when considering the third orders. The model improved when considering the second order groups 
especially for aromatic and alicyclic compounds with only one ring and polyfunctional acyclic compounds. Large 
and complex compounds were considered in the third order groups, however, only five (5) third order groups 
are available from the training set, the prediction considering third order group give less significance on the 
predicted value. The AAE values indicate the deviation of the predicted value from the experimental value about 
15.62 K with ARE 7.23 %. The result is compared with the study by Hukkerikar et al. (2012) for the prediction of 
normal melting point. This study gave a slightly better prediction compared to the proposed model using CI 
method which gave prediction with R2 = 0.7135, AAE = 38.68 K, and ARE=12.32 %. However, their study utilised 
more data and improved their prediction using stepwise regression method. The accuracy of the model in this 
study can be further improved by incorporate  more data for training of the model. 

Table 4: The statistical analysis of the regression step 

Parameter First Order Second Order Third Order 
SD (K) 24.7807 22.65 22.22 
AAE (K) 17.78 16.00 15.62 
ARE (%) 8.11 7.35 7.23 
R2 0.8538 0.8782 0.8829 

3.4 Model validation  

The freezing point model was verified to prove the validity and accuracy of the model. This verification was done 
for 20 test data set using the contributions obtained from the first, second and third order contributions shown 
in Table 1 – 3. The result of prediction for 20 set data having values of AAE =33.88 K, ARE =12.22 % and R2 is 
0.8384. The test data prediction having higher AAE and ARE due to some compounds were having groups with 
less than 5 occurrences in the training set. To illustrate the prediction of freezing point, a sample of freezing 
point estimation for hexyl ether is illustrated in Table 5. Since hexyl ether is a simple and straight chain molecule, 
it can be described with only three first order groups. By using the model, the prediction given a value of 212.85 
K compared to the experimental value of 230.15 K. The prediction result for hexyl ether has absolute error 17.3 
K and a relative error of 7.51 % that indicates the percentage deviation from the actual value.  

Table 5: Prediction of freezing point of hexyl ether 

Property Value   
Formula Molecule C12H26O   
TF(experiment) 230.15 K 
Molecule Structure 

 
Universal constant, TFo 189.34 K   
First-Order Group Occurrences (Ni) Contribution (TF1i)  
CH3 2 -25.1779  
CH2 9 6.4107  
CH2O 1 16.1671  
Using Eq(1) 𝑇𝑇𝐹𝐹 = 𝑇𝑇𝐹𝐹𝐹𝐹 +  �𝑁𝑁𝑖𝑖𝑇𝑇𝐹𝐹1𝑖𝑖 + 𝑤𝑤�𝑀𝑀𝑗𝑗𝑇𝑇𝐹𝐹2𝑗𝑗 + 𝑧𝑧�𝑂𝑂𝑘𝑘𝑇𝑇𝐹𝐹3𝑘𝑘 

 𝑇𝑇𝐹𝐹 = 189.34 + 2(−25.1779) + 9(6.4107) + 16.1671 
 𝑇𝑇𝐹𝐹 = 212.85 𝐾𝐾 
 𝐴𝐴𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = 7.51 % 

845



4. Conclusions 
This study proposed a model that capable of determining the freezing point of jet fuel components. The outcome 
of this study was a model that can predict the freezing point of jet fuel component using group contribution 
method where different chemical structures described as first, second and third order groups. It is observed 
from the results an improvement in the correlation coefficient value from 0.8538 to 0.8829 of the first order group 
regression and third order group regression. The freezing point prediction model was verified and proven to be 
a good prediction model to estimate the freezing point of jet fuel and other liquid compounds with acceptable 
accuracy of the results and the correlation coefficient of 0.8384, AAE 33.88 K and ARE 12.22 %. The proposed 
group contribution model of freezing point is useful for determination of the freezing point of compounds within 
the listed groups as presented in Table 1 - 3. Future work can be conducted to include more experimental data 
of freezing point to increase the model accuracy, improve further AAE and ARE values, and also expand the 
model by including more groups. Therefore, the model can be applied for a wide range of compounds.  
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