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The topic was to spot and potentially measure the amount of floating waste on the river Tisza and its offsets. It 

was a two-year long study in which a complete system was designed and built and performed measurements 

50-70 % of waste dumped into rivers are plastics. Ranging from micro-plastics (< 0.1 μm) to macro-plastics (>5 

cm). The nature of the plastic pollution depends greatly on the source of the pollution. In the river Tisza and its 

offsets, the pollution is mainly coming from landfills located near the upstream. In the first phase, an experimental 

motion-detection camera system was developed to try out multiple configurations during the research. The 

open-source motion software has been implemented, running on Raspberry Pi 3 as data collectors. The system 

uploaded data into a data server running in the cloud (Azure). The camera system was operating for more than 

a year and collected over 440,000 pictures. At the end of this phase, the conclusion was that individual plastic 

objects are not recognisable, only bigger groups of them. On top of this, we have seen that the optical noise is 

very high, rendering many of the pictures unfit for analysis, but the results still served as a very good starting 

point for the collection of AI training data. During the second phase, software was experimented. YOLOv3 and 

Faster R-CNN have been applied, eventually settling for Faster R-CNN with a ResNet-50-FPN base network. 

1. Introduction 

For the everyday person, the most visible environmental problem is the presence and processing of waste. 

Urban and countryside residents encounter waste collection, affecting their behaviour and opinions. On the 

lowest level, packaging and discarding goods is an everyday task, sometimes even from the point of purchase 

up until the recycling bin. One level above that, people desire to keep their immediate environment waste-free 

and utilise waste in the best possible way. The media brings news to the global environment and waste 

processing. A special case of this is when someone is living or working near surface waters, so the global 

problem of water pollution is affecting them directly as well (Aytan et al., 2020). One of the most visible forms of 

pollution is the waste dumped into our surface waters. This waste can assemble into islands in the seas or in 

lakes and can travel down on rivers and from river wash (Klemeš et al., 2021). It's an inherent issue that people 

living upstream waters pollute the environment of those who live downstream (Castro-Jimenez et al., 2019). 

Society must accommodate for this basic law of physics. Even if one or two PET bottles would not seem like a 

big deal upstream, they can compound into mountains of waste on a slower downstream section and can even 

cause disasters. It is a logical approach to get the waste out as soon as possible, as removing a few PET bottles 

is easier than lifting out huge piles of garbage using heavy machines (Figure 1). This was the founding statement 

of the two-year R&D project that aimed to rid the river Tisza and its feeders of plastic waste. The goal was to 

build a floating device that collects the waste upon its first appearance when there are only a few items to collect. 

As a result, a watercraft has been made that can optically detect discarded PET bottles and remove them from 

the river. In this project, our task was the optical detection and early alerting of the appearance of floating PET 

bottles. 
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Figure 1: Typical waste in the river 

2. Problem analysis: floating macroplastic pollution 

Plastic pollution has many sources. (Lechner et al., 2014) highlights micro- and mesoplastic debris resulting 

from industrial plastic production. In Eastern Hungary, significant macroplastic pollution is caused by improperly 

handled or outright illegal upstream waste dumps (Ljasuk, 2021). These waste dumps cause large-scale 

macroplastic pollution, usually when the river is flooding. A typical polluting item is a plastic bottle. Figure 2 

shows a debris-moving simulation supporting problem analysis. 

 

 

Figure 2: Debris moving simulation 

This requires preparation time; therefore, a timely warning is very important. Plastic items can be detected in a 

number of ways, but the observation limitations quickly eliminate most of them. The observation environment 

has the following properties. The detection distance is relatively long. The rivers where performing the detection 

are quite wide. Distances of 30-50 m are not uncommon. Although it would be definitely easier to mount the 
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camera downward-looking (van Lieshout et al., 2020), the water surfaces to monitor do not permit that 

configuration.  

Plastic items to be detected are covered with other materials from the environment. There is almost always a 

water film on them, and other foreign materials (e.g., dirt or algae) are quite common. These limitations make 

remote materials testing methods largely unusable. Laser Induced Breakdown Spectroscopy or spectral imaging 

all require illumination by a special light source (laser or infrared/ultraviolet light source) (Gundupalli et al., 2017), 

which is very complicated given the significant distance between the observation location and the target object. 

The water film and other materials covering the targets also make remote materials testing unfeasible.  

3. First phase: using motion detection camera 

Motion detection security cameras almost always have a feature that detects moving objects in the input image 

stream. The mechanism is simple. The camera compares the actual image to the previous image (or a limited 

set of previous images) and calculates the differing pixels between the actual and previous image(s). If the 

amount of differing pixels is too high, a relevant movement event is triggered and based on the configuration of 

the camera, the image and the difference mask are saved. Off-the-shelf security cameras have limited 

configuration options with regard to motion detection parameters, so we built our own motion detection camera 

and its server backend (Figure 3). 

 

Figure 3: Motion detection camera 

It was clear from the beginning that the system must operate in edge computing architecture, i.e., the camera 

node has to have built-in intelligence to select image candidates where something relevant is happening, as the 

data connection between the camera unit and its server backend will not be able to transfer all the images taken. 

Components of this system are the following. Camera unit based on a Raspberry Pi 3 Model B+ single board 

computer and its Raspberry Pi Camera Module 2. The camera unit runs the motion open-source software that 

implements the motion detection algorithm and has many configuration parameters to tune this algorithm. The 

camera unit continuously runs the motion detection, and in case of a movement trigger it saves the actual image 

and the difference mask to the local SD card. The camera unit also maintains an SSH tunnel to its camera 

server. The camera unit runs the motion open-source software that implements the motion detection algorithm 

and has many configuration parameters to tune this algorithm. Camera server is a web application implemented 

in Spring/Java and deployed into the Azure cloud. The camera server regularly visits the camera units and 

retrieves the images and the difference masks. The camera server has a web interface that allows authenticated 

users to browse images. Administrator users can also configure the motion detection parameters. The camera 

unit was deployed in the harbour of Bodrogkisfalud, Hungary and operated for 13 months. During this time, the 

camera unit recorded more than 440,000 images. Most of these images were not floating plastic waste but 

unrelated changes in the input image, e.g., boat traffic of the harbour or even the sun’s glitter on the river. When 

the camera recorded relevant images, those images were related to larger islands of floating debris, sometimes 

containing plastic waste (Figure 4). 
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Figure 4: Islands of floating debris 

Figure 5 shows such larger floating debris and the different masks that triggered the image capture. Green areas 

are masked out from the motion detection.  

 

 

Figure 5: Mask image of floating island 

After a lengthy configuration tuning process, 4,000 pixel threshold was chosen. This is the number of pixels 

changed in the image that triggers a capture. Considering the image size of 1,024x640 pixels, it is clear that 

individual plastic waste items cannot be detected only if they form a larger block of debris. Even with this quite 

high threshold, the first iteration generates a large amount of irrelevant images because its selectivity is low. 

4. Second phase: Applying Deep Neural Networks (DNN) 

The first phase failed in terms of selectivity as it picked up a large number of images where nothing relevant 

happened. In addition, its sensitivity did not satisfy the requirements either because the pixel threshold was too 

high to capture individual plastic waste items and lowering the threshold would have generated even more false 

alarms. As plastic waste is often contaminated by, e.g., dirt and comes in different colours and shapes, we 

needed an image recognition algorithm able to operate in such a noisy environment. Deep Neural Networks 

(DNN) were expected to satisfy these requirements. Applying DNN to recognise floating plastic waste is not a 

new idea (van Lieshout et al., 2020) also took this approach. The camera setup and the classification 

requirements are different. Their system uses a downward-looking camera, which decreases the distance to the 

target objects. This setup also results in better resolution, which lets them perform more detailed classification 

(”plastic”/”not plastic”). The second iteration is still expected to cover as large a water surface as possible, which 

means that target objects measuring 20-30 cm can be as far as 20-30 meters from the camera. Even if the 

distance can be partially offset by optical zoom, targets will still look small in the input image. We experimented 

with the YOLOv3 3 (Redmon and Farhadi, 2018) and Faster R-CNN (Ren et al., 2017) deep neural networks. 

Implemented reliable object detection with YOLOv3. Imprecise localisation was experienced. In the case of 

Faster R-CNN, the challenge was that our training machine had only 6GB of GPU memory, which is not sufficient 

to train with the ResNet-101 backbone commonly used with Faster R-CNN, so that was falling back to the 

ResNet-50-FPN model. The implementation came from Torchvision. The model was pre-trained on the COCO 

train2017 dataset; the last 3 layers of the backbone were allowed to train, and we trained for 11 epochs. The 

threshold confidence level was set to a relatively low value, 0.25. The expectation was that this low level would 

generate some false positives, but the low quality of the target objects (due to the quite long distance) requires 
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relatively lax recognition. The initial training dataset had 195 images, was annotated with the VGG Image 

Annotator tool 1 (Dutta et al., 2023) to determine the bounding area of the relevant object and came from the 

following sources. Some of the images were collected by camera crews, while others came from cameras from 

the first iteration. Plastic waste collected from the river and captured in front of neutral backgrounds. 

 

Figure 6: Training image 

Figure 6 shows such a training image with bounding area annotation shown. Plastic waste images in natural 

settings (e.g., seashores) were collected from the internet. The system’s architecture is constructed in such a 

way that its user is expected to continuously collect and annotate images. Hence, we expect the training image 

set to grow. The training image set was augmented by rotating the training images by 90, 180 and 270 degrees. 

All the images were scaled so that their longer side was 640 pixels. There is no scaling augmentation as the 

model’s Feature Pyramid Network takes care of scaling the training data during inference. 

 

Figure 7: Waste recognition 

The result is demonstrated in Figure 7. The algorithm cannot recognise every waste item, but it recognises 

enough so that the warning can be triggered. Further analysis was done on five video footage taken in different 

circumstances about real large-scale plastic waste pollution. Each footage is filmed in a river landscape 

environment and depicts floating debris from larger distances (5-50 m), plastic and non-plastic, at the same 

time. Typical training image with bounding area annotation shown the selected section of the video footage, we 

counted the recognisable debris and compared it to the output of the algorithm.  

The following categories were considered: 

• Recognized: the human viewer considers the item a plastic waste, and the algorithm located it correctly. 

• Not recognised: The human viewer considers the item a plastic waste, but the algorithm does not locate it 

correctly.  

• Miscategorised: The human viewer does not consider the item a plastic waste, but the algorithm identifies 

it as such.  

Note that due to the long distance and the quality of the footage, it is not always easy to decide, even for a 

human viewer, if a certain piece of debris is, e.g., a plastic bottle or a wooden trunk. Also, in the mass of floating 

debris, it is not always possible to distinguish individual items. More detailed analysis reveals, however, that this 

is mostly due to the chaotic waste mass where even human viewers have trouble distinguishing and categorising 

items. DNN-based image recognition algorithm was a great leap toward more reliable waste recognition, and it 

is expected that its performance will improve as more training images accumulate during field operation. The 

early warning system’s architecture was updated to accommodate the functions needed to operate the deep 

neural network. 

Compared to the first phase, the changes are the following. 
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• Images are now taken by a professional surveillance camera featuring optical zoom. This is necessary to 

provide sufficiently detailed images so that the DNN-based algorithm can pick individual plastic waste 

objects. A Foscam surveillance camera with 18x optical zoom was employed. 

• The camera unit is now responsible for running the trained DNN in inference mode. This required significant 

hardware updates as the embedded computer has to be equipped now with a reasonably powerful GPU. 

As the camera unit is an edge node and runs only inference and not training, a GPU with 2GB GPU memory 

is enough. The surveillance camera and the camera server are connected with the ONVIF protocol, which 

lets the camera server rotate the camera so that the camera’s view can scan the entire observation area. 

• The camera server got additional functions related to selecting and annotating images in which a relevant 

object was not recognised, initiating training on the training server and updating the DNN weight files on the 

camera units. 

• The training server is a new component that is responsible for running the DNN in training mode once new 

annotated images are available. It is separated from the camera server as training requires a relatively 

strong GPU (6GB GPU memory with the current model). 

The second iteration featuring a DNN increased the selectivity of the system significantly, generating much 

fewer false alarms. 

5. Conclusions 

After concluding of research, the actions performed in phase two have significantly reduced the amount of false 

detections. On the large water surface area, it is hard to recognise the target objects, so perfect detection is not 

possible, i.e., always have false negatives (and some false positives). This makes the solution fit for early 

detection and alerting but not so fit for precise counting. Due to bandwidth limitations, the system can only be 

deployed in an edge computing architectural style, which requires a relatively powerful GPU in the camera unit 

in case of the second iteration. Results can be adapted as-is for practical use of early alerting. It is capable of 

operating ashore, aboard a watercraft or aboard an aircraft (e.g., drone) and on every waste collection area 

where detection is challenging otherwise (e.g. agricultural lands, forests, roadsides). 
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