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Geotechnical Engineering is a data-driven specialty that models the behavior of soil and rock as engineering 

materials. Due to their nature, however, much effort is directed toward defining the material properties and extent 

of various soil and rock on a site (buildings, bridges, dams) or region (transportation infrastructure). The great 

extent and variability of soil as an engineering material have led to the development of material, field exploration, 

and laboratory testing databases. Some have become national in scope, while others have expanded along 

specialist lines (e.g., earthquakes, landslides). This paper presents a typical application that investigates the 

impact of swelling clays and discusses its integration into the BENIP framework, with an emphasis on its role in 

advancing sustainability in geotechnical engineering. The study employs artificial neural networks as a modeling 

tool to predict crucial parameters such as dry density and in-situ confining stress, which directly influence 

volumetric changes in the soil. By minimizing these changes, potential damage associated with swelling clays, 

including ground movement, foundation deterioration, and infrastructure instability, can be mitigated. The results 

of the study exhibit promising outcomes, signifying the potential effectiveness of the proposed neural network 

models in promoting sustainability in geotechnical engineering. 

1. Introduction 

Geotechnical engineers continuously enhance field and lab methods to comprehend the interactions between 

the built environment and the soils that support it. These improvements include better equipment and sensors, 

more sophisticated analysis methods, and a greater appreciation for the holistic approach to building. A logical 

next step would be integrating those improvements into a more comprehensive platform such as BENIP. The 

Built Environment Information Platform (BENIP) creates a highly contextual information platform that connects 

city planning and development to traditional domains of architecture, civil, and transportation engineering via 

Digital Realities (virtual reality, augmented reality, simulations, and real/virtual twins) (Horváth et al., 2023). This 

paper examines geotechnical engineering's role in an integrated information platform shared among 

stakeholders, enabled by artificial intelligence and specialized modeling. It presents a geotechnical background, 

explores the significance of geotechnical databases, and discusses a geotechnical application utilizing artificial 

neural networks (ANNs) to address essential parameters such as dry density and applied stress. Several studies 

have demonstrated the effectiveness of ANNs in predicting soil-related phenomena. For instance, (Ashayeri et 

al., 2009)) estimated the amplitude and swelling pressure of unsaturated clay using ANNs. (Merouane, 2018) 

used ANNs to estimate the swelling pressure of expansive soils. Additionally, (Dutta et al., 2019) utilized ANNs 

to predict the free swell index of expansive soil. Notably, previous studies have overlooked the importance of 

addressing dry density and applied stress, underscoring the novelty and value of this research.  

The scientific hypothesis of this research is to investigate the potential of artificial neural networks (ANNs) in 

predicting crucial geotechnical parameters within the BENIP framework, addressing swelling clays, and 

promoting sustainability. ANNs were chosen based on prior successful studies. The procedure involves 

analyzing geotechnical data using ANNs to develop correlations for effective decision-making, mitigating 

potential damage caused by swelling clays. 
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2. Geotechnical background 

The geotechnical engineering discipline has been data-driven since its early years (1920’s) and continues in 

that direction. The reason for such an approach lies in the nature of soil and rock: their properties and distribution 

may be highly variable, their behavior changes due to the presence or absence of water, and their sheer volume 

within a site. Soil hydraulic conductivity may vary over 12 orders of magnitude; particle sizes may be m or nm; 

strength and stiffness (modulus) may differ by a factor of 106. Most of these materials were deposited or 

arranged through natural processes that take place over a period of millions of years (geologic) or seconds 

(earthquakes).  

Defining material behavior is a crucial task for geotechnical engineers, and a large amount of effort is devoted 

to that task in every project. Existing data is collected through GIS and historical records, and then field 

investigations are planned based on the objectives of the project. Such investigations may require only a modest 

amount of exploration and require less than a week, while others are very extensive and require several years 

to complete. There are a wide variety of techniques and equipment that may be applied, but they are all focused 

on answering questions concerning the nature and extent of the soil and rock present on-site. The evolution of 

field investigations is summarized in Table 1 (Sara, 1994). 

Table 1: Evolution of exploration effort and project risk 
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The evolution in the table moves from left to right. It shows the increased dependence on data gathered from 

the field and laboratory to cope with the increased complexity and risk of projects. Projects have become more 

expensive, and the risks related to errors during construction and operation have grown to almost incalculable 

levels. Large environmental projects were especially difficult because they were numerous, and their extent and 

impact were often undefined at the start of exploration. In the 1990s, geotechnical projects were integrated with 

environmental regulation and a broader base of expertise from other disciplines. This forced geotechnical 

professionals to formalize procedures that had been more intuitive in the past. Conceptual models were defined, 

investigations were separated into phases, and the goals for each phase were more clearly described. While 

such formality was sometimes frustrating and time-consuming, it developed into a clear framework for planning, 

executing, and managing an investigation. It also defined more clearly the process of data gathering and 

processing and its use in analysis. This process is illustrated in Table 2, where data evolves from raw 

measurements into more and more refined stages from left to right. 

Table 2: Generations of data from initial raw lab and field (left) to model predictions (right) 
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With each generation, the data becomes more focused on answering specific design questions. This has led to 

a more direct relationship between exploration, design, and analysis. Simply put (Sara, 1994): The most 

important data is that which leads to making decisions. Therefore, only collect data that is part of the decision-

making process. 

The data collection/analysis process will often cycle back on itself; more data gives rise to more questions that 

require additional investigation. The circular nature of investigate-design-construct was first practiced by Peck 

for tunnel design and construction and is known as the Observational Method (Self et al., 2012). It became 

popular due to the highly variable nature of soil and rock; the designer/builder simply could not know enough 

prior to the start of tunneling. The approach had to be holistic since design, construction, management, and 

finance had to sign off on all changes to the project scope as it progressed.  If one of the parties had not agreed 

that modifications were the norm rather than the exception, any changes in conditions would be met with a 

serious slowdown or complete shutdown of the project. 

3. Geotechnical databases 

Database development in geotechnics began as early as the 1960s. It existed on paper (tabular or maps) and 

was narrowly focused on specific classes of problems such as earthquakes, landslides, construction materials, 

and laboratory testing. Some were shared between similar agencies (e.g., highway departments) within a region 

(cold regions research laboratories) or between professional societies. More recently, attempts to broaden these 

databases have focused on ways to better exchange often disparate data. The US Federal Highway 

Administration developed middleware to encourage better data exchange (Lefchik et al., 2007). One such 

database is the National Geotechnical Properties Database maintained by the British Geological Survey (Lefchik 

et al., 2007). The database contains records for 7,370 projects (site investigation reports). Linked to the reports 

are 180,000 holes. There is a total of 3,600,000 in-situ field records, with 880,000 samples linked to the holes 

and a total of 5,200,000 laboratory test data records. Some of the database structure is shown in Figure 1. 

Records are grouped by exploration or test method and by material property. Figure 2 shows various examples 

of data presentation and results of analysis at the third-generation level (see Table 2). The data analysis is 

performed within the database software.  

 

Figure 1: Structure of BGS National Geotechnical Database 

 

Figure 2: Extracting processed data from NGD 

Being a public agency, BGS encourages the submission of additional data by providing an online portal. The 

database resides within a larger network of databases, which are maintained by BGS. A common issue faced 

by the developers has been reconciling overlapping data. Since several of the databases are designed to run 

as stand-alone, they may contain the same data. When combined, the overlapping data must be properly 

accounted for. 
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4. Example Geotechnical Application 

The example discussed here is a geotechnical design problem that is experienced throughout the world. Certain 

types of soils containing specific clay minerals exhibit very large expansion and contraction when subjected to 

wetting and drying. These swelling clays are present near the ground surface and may be treated in a variety of 

ways. However, the greatest challenge is to develop an economical solution that could be applied to residential 

homes and other light buildings. To address the problem, the engineer must perform a variety of tests that 

require time and expense. A better solution would be to correlate results from simpler, quicker tests to determine 

the risk of swelling in a particular soil found on-site. One approach that is gaining popularity is to use artificial 

neural networks (ANN) to develop these correlations and determine the level of risk the candidate soil presents. 

Simple remedies, such as mixing a percentage of sand with the swelling soil, may be evaluated as well (Najjar 

et al., 2019). The utilization of artificial neural network (ANN) models enables informed decision-making to 

address and mitigate problems effectively (Anibal et al., 2023). 

The candidate swelling clay soil comes from Damsarkho city in the Latakia region of Syria. The Unified Soil 

Classification System (ASTM, 2017) classifies it as CH. The sand used to modify its swelling behavior is a fine 

marine sand common to the coastal area. Various soil mixtures were prepared by incorporating different 

proportions of sand (10 %, 20 %, 30 %, 40 %, and 50 %) into the expansive soils based on dry weight. Proctor 

experiments were conducted (Figure 3(a)) to determine the maximum dry density and optimum moisture for 

each mixing percentage. The results demonstrate a continuous increase in the maximum dry density, which is 

consistent with Gupta and Sharma's findings (Gupta and Sharma, 2014). 

  

                                       (a)                                                                        (b) 

Figure 3: (a) Proctor experiments for clay samples with different percentages of added sand (b) Beneficial effect 

of adding sand to swelling clay 

The benefits of adding sand are shown in Figure 3(b), where the liquid limit is reduced from an original value of 

80 % to 40 %. Liquid limit is an index indicator of swelling potential where values above 50 % are considered to 

have high swell potential. The clay mineralogy of soil can be associated with the position of the Atterberg limits 

plot on a plasticity chart (Casagrande, 1948). To this end, the liquid limit and plasticity index were plotted on a 

plasticity chart for each percentage of added sand, which included ranges for montmorillonite, illite, kaolinite, 

and chlorite (Holtz and Kovacs, 1981). The present study found that the samples with varying percentages of 

added sand consisted predominantly of illite based on the plasticity chart. The free swell was determined for 

clear clayey soil (i.e., without any sand content) using Prakash and Sridharan's (Prakash and Sridharan, 2004) 

method and was found to be 127 %.  

The other two parameters (PL, PI) are indexes that reflect improved behaviour with lower values. Additional 

parameters that influence the degree of swelling are the compacted dry density of the clay/sand mixture and 

the amount of compaction energy. Optimizing these two main parameters, in addition to accounting for many 

other conditions, became a very complex operation where traditional approaches such as regression analysis 

were not adequate to predict behavior. 

Artificial neural networks were used to help predict the dry density that minimized volumetric changes 

(swell/shrink), required compaction effort, and in-situ confining stress. Confining stress represents the load due 

to buildings constructed over the swelling soil. Additional conditions and constraints were also included, but they 

are beyond the scope of this paper. MATLAB was utilized as the primary tool for implementing the ANN model, 

with performance metrics including coefficient of correlation (R) and mean square error (MSE) used to evaluate 

the model's accuracy. We developed prediction models for dry density ANN(𝛾𝑚𝑎𝑥) and stress state for minimum 

volume change ANN(𝜎𝑚𝑖𝑛). Inputs came from the results of simple experiments and combinations of sand/clay 

mixtures. In this work, 648 sets of data were used for the dry density and for applied stress that achieves 

minimum volumetric change. For training, 70 % of the data was used, while the remaining 30 % was used for 

validation and testing. A schematic of the network is shown in Figure 4. Constraints of the models were set to 

minimums and maximums determined from prior laboratory measurements, as shown in Table 3.  
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Figure 4: Schematic of neural network models 

Table 3: Constraints used in ANN process 

Input parameters 
ANN(𝜸𝒎𝒂𝒙) ANN(𝝈𝒎𝒊𝒏) 

Min Max Min Max 

LL (%) 41 79 41 79 

SR (%) 45 100 45 100 

σ (kN/m2) 25 300   

𝜸𝒅 (kN/m3)   12 17.8 

𝜸𝒃𝒓𝒐 13.95 17.4 13.95 17.4 

Output parameters Min Max Min Max 

𝜸𝒎𝒊𝒏 (kN/m3) 12 17.8   

𝝈𝒎𝒊𝒏 (kN/m2)   25 300 

Training, validation, and testing phases showed excellent agreement between target values and outputs. The 

results are encouraging, although since the initial evaluations were somewhat contrived, a very high level of 

agreement would be expected. One would expect less agreement for data sets that are dispersed over a region 

or include a wider variety of clays. Additional analyses were performed on datasets from other authors, and 

similar agreement was found.  

Integrating expansive soil modeling with detailed data on the built environment is critical for increasing 

sustainability in geotechnical engineering. The adoption of this integrated methodology enables better planning 

and risk assessment in relation to damage caused by swelling clays. It is crucial to note that the annual damage 

to structures caused by swelling clays in the United States is roughly $ 1010. Because of their propensity to 

undergo significant volume changes, expansive soils provide severe sustainability challenges, resulting in 

ground movement, foundation damage, and infrastructure instability. By implementing the methodology 

proposed in this paper, which focuses on predicting applied stress or dry density at specific site locations, the 

volumetric changes of expansive soils can be minimized. This, in turn, facilitates the design of appropriate 

foundations that apply the predicted stress, mitigating issues such as cracks, settlements, and structural 

instability in buildings constructed on expansive soil. By addressing these critical concerns, the integration of 

such modeling techniques and data enhances sustainability in geotechnical engineering. 

5. BENIP and Geotechnical Engineering 

Software platforms that combine databases, rigorous analysis, statistical evaluations, and sophisticated 

visualization are already common in the geotechnical community. Connecting those software platforms has 

been a much greater challenge. The de facto standard finite element software for geotechnical engineers is 

Plaxis which incorporates a material database, inverse laboratory simulations to extract model parameters, and 

methods to conveniently import and export data and results. Other software, such as Midas GTS, performs 

similar analyses and is part of a larger suite of structural engineering and construction software that is integrated 

(to say seamlessly integrated would be too generous to the software). Integrated site design software from 

Autodesk and Bentley covers a wide range of design methods and specialized solutions. However, a truly 

integrated platform has remained elusive.  

Part of the challenge is hardware, part of it is software, and a third component is the very distinct and specialized 

nature of engineering. The first two are left for another discussion; the third is especially important to BENIP. 

Specialized language and tools have evolved in engineering because they increase the working efficiency of 

the engineer. This has been evolving in Geotechnical Engineering since its inception in the 1920s, and it has 
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allowed for a tremendous increase in understanding and clearly communicating problems, ideas, and solutions. 

Integrating the specialty with other specialties will require compromise and new ideas. This situation is very 

similar to the growth of Geo-environmental Engineering in the 1990s as mentioned earlier. Disciplines that were 

outside the realm of geotechnics, such as aquatic chemistry, biology, and contaminant transport, became 

integral parts of site investigations and remediation design. Today, the newly developed methods and 

instruments have become fully integrated into an entire spectrum of field and laboratory investigations that go 

well beyond environmental work. The integration of disciplines is critical for promoting sustainability in the field 

of geotechnical engineering. 

6. Conclusions 

This paper has presented a Geotechnical Engineering perspective of BENIP ideas by presenting the ideas and 

methods we have been using to find solutions to difficult problems in civil engineering projects. The specialty 

has been data-driven since its beginning due to the highly variable nature of the materials used in the design. 

The increasing effort in the field and the laboratory to better define material behavior has led to projects with 

increasing complexity and reduced tolerance for error. The profession has already made significant progress in 

data collection, processing, and organization. More and more standards for data storage and retrieval, as well 

as testing and design methods, have allowed for a wider integration of data and workflow. However, challenges 

remain due to computational demand, specialized problem-solving, and impediments in communication. The 

application of artificial neural networks (ANN) in this study has yielded promising results. By utilizing ANN 

models, we have successfully predicted critical parameters such as dry density and applied stress, contributing 

to more accurate and informed decision-making processes. The utilization of ANN demonstrates its potential to 

enhance the efficiency and effectiveness of geotechnical engineering practices. The ongoing efforts to 

overcome computational challenges, enhance problem-solving capabilities, and improve communication will 

further propel the integration of data and foster interdisciplinary collaboration. With continued progress, 

geotechnical engineering will play a pivotal role in driving innovation, optimizing project outcomes, and ensuring 

the long-term sustainability of civil engineering projects. 
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