The Role of Ammonia in Decarbonization: A Techno-economic Assessment of NH₃ as H₂ Carrier and NH₃ as Energy Vector

Elvira Spatolisano*, Federica Restelli

GASP - Group on Advanced Separation Processes & GAS Processing, Dipartimento di Chimica, Materiali e Ingegneria Chimica “G. Natta”, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy

elvira.spatolisano@polimi.it

NH₃ is increasingly recognized as a versatile and promising energy vector in the transition towards a sustainable energy future. By utilizing renewable electricity to power the Haber-Bosch process for ammonia synthesis, green ammonia production eliminates or significantly reduces greenhouse gas emissions compared to conventional fossil-based NH₃ production pathways. As a clean and sustainable alternative to conventional ammonia, green NH₃ offers multiple benefits, including serving as a carbon-free fuel for transportation, providing a means of storing and transporting renewable energy, and enabling the production of carbon-neutral fertilizers and chemicals. In this framework, this work discusses the potential of NH₃ as both H₂ carrier and energy vector through a detailed techno-economic assessment. For each stage of the value chain, both fixed and operating costs are highlighted, to understand where to focus research efforts for future process intensification.

1. Introduction

Green ammonia, produced using renewable energy sources and sustainable production pathways, is emerging as a key ally to decarbonize various sectors, particularly the transportation, power generation and industry. As H₂ carrier, ammonia offers the advantages of high H₂ density (121 kg/m³), ease of storage and transport, and compatibility with existing infrastructure, making it an attractive option for various energy applications. NH₃ value chain as hydrogen carrier is represented in Figure 1.

Typically, green NH₃ production sites are located in areas abundant in renewable energy, while importing H₂ regions are countries with high demand but limited green energy sources. Electrolysis was initially embraced in the early 20th century as green NH₃ synthesis process, but was then abandoned because of the subsequent decline in natural gas costs (IRENA and AEA, 2022). More recently, several companies, including Siemens, Yara, Topsoe, ThyssenKrupp, Casale, KBR, Tsubame and Starfire Energy, are working on the Haber-Bosch process intensification to enable CO₂-free ammonia synthesis. By 2022, over 60 projects for renewable ammonia plants had been announced, targeting an annual production capacity of 71 million tons by 2040 (IRENA and AEA, 2022). Figure 2 illustrates the projected increase in annual global green ammonia capacity, depicting the start-up year and capacity of the announced plants.

Figure 1. Green NH₃ value chain as H₂ carrier.

Figure 2. Projected increase in annual global green ammonia capacity.
Australia is slated to host 1/3 of the planned plants, capitalizing on its abundant wind and solar energy resources, facilitating high production capacities. The largest plant, boasting an announced ammonia capacity of 20,000 kt/y, is set to be constructed in Western Australia (The Royal Society, 2022). Once produced, NH₃ is typically stored as a liquid in refrigerated, pressurized, or semi-refrigerated tanks and then transported to the utilization hub. Long distance NH₃ transport can exploit either pipelines (in Russia and the United States of America the transmission networks span over 2500 km) or seaborne transport. In this respect, it is worth noticing that the maritime sector views ammonia as a green fuel for shipping. MAN Energy Solutions aims to commercialize a two-stroke NH₃-based engine by 2024, while the Norwegian consortium led by Wärtsilä is developing a four-stroke NH₃ engine.

On the other hand, cargo trucks are typically employed for the short-distance delivery of ammonia due to their relatively high transportation costs per kilometre compared to other methods (Hinkley, 2021). When arrived at the unloading terminal, ammonia has to be decomposed to favour H₂ release. The process of NH₃ decomposition to H₂ and N₂ (i.e., NH₃ cracking) is commercially available for small-scale applications in the metallurgical industry (Ishimoto et al., 2020). The sole large-scale ammonia cracking process, situated in Argentina at the Arroyito heavy water production plant, has been non-operational since 2017 (Sadler et al., 2018). IRENA reports two ongoing large-scale cracking projects, both located in Europe. One, announced in the Netherlands by Transhydrogen Alliance, is set to start operations in 2024, fulfilling one-third of the current H₂ demand in the Netherlands. The second project is planned at the port of Wilhelmshaven in Germany and is expected to be operational by 2030, meeting 10% of Germany's projected hydrogen consumption.

Commercial small-scale ammonia crackers operate using a Ni-based catalyst at temperatures exceeding 850 °C, with the necessary heat supplied electrically. However, large-scale ammonia crackers are less likely to be electrically heated due to the substantial energy demand of the process. As an alternative, fuel combustion is responsible for providing the necessary heat for the decomposition reaction (Rouwenhorst et al., 2019). Concerns regarding environmental impact arise from the fuel used in large-scale crackers. To mitigate CO₂ emissions, either a portion of the produced H₂ or part of the inlet NH₃ can be burned, although this approach reduces the process efficiency and the H₂ yield (Ashcroft and Goddin, 2022). Complete NH₃ decomposition can be avoided at the utilization hub if NH₃ is used as an energy vector, as shown in Figure 3.
As a matter of fact, the ammonia heat of combustion (18.6 MJ/kg) suggests its potential use as a fuel source. Ammonia’s use in internal combustion engines dates back to the Second World War in Belgium, where it was employed for buses due to fossil fuel shortages. Although this solution was abandoned after the fuel shortage ended, it underscored ammonia’s potential as a viable fuel source. Researchers are actively developing methods to enhance ammonia combustion properties and design suitable burners. These efforts include blending ammonia with other fuels, as coal or H₂. Experimental findings indicate that a 28% blend of cracked NH₃ achieves performance comparable to fossil fuels (Verkamp et al., 1967).

To assess the opportunity of NH₃ as both H₂ carrier and energy vector, a detailed techno-economic assessment is carried out considering the green NH3 value chains of Figure 1 and Figure 3. The methodology for the techno-economic assessment is explained in section 2. Results are critically discussed in section 3, in view of NH₃ application to achieve the decarbonization target.

2. Methodology for techno-economic assessment

For each step of the value chains detailed in Figure 1 and Figure 3, an in-depth techno-economic assessment is carried out. Orange dashed lines of Figure 1 and Figure 3 identify system’s boundaries. A flat green H₂ production of 43 t/d is assumed at the system’s boundary. Harbour-to-harbour H₂ transport is considered, covering a distance of 2500 km. At the unloading terminal, different scenarios are taken into account:

1. scenario 1: NH₃ is cracked to H₂ and N₂ and is conveyed to the H₂ valley for electric energy production. H₂ is produced at 30 bar with a purity of 99.9 mol%, suitable for its industrial applications. In this case, variable utility cost is considered: the present one, referred to the year 2022, and the future one, which accounts for a cost reduction of electricity, particularly, in the next 5 years;

2. scenario 2: NH₃ is partially (28%) cracked to H₂ and N₂ for its application as a fuel. A mixture of H₂ and N₂ is delivered at the battery limits.

3. scenario 3: NH₃ is not cracked at all. It is used directly as a fuel at the battery limits.

For each scenario discussed, the cost driving processes of the whole value-chain (i.e., NH₃ synthesis and cracking, when needed), are modelled with Aspen Plus V11® process simulators (Restelli et al., 2024; Restelli et al., 2023). From simulation results, both fixed and operating costs (i.e., CAPEX and OPEX) are estimated with the Turton methodology (Turton et al., 2012). As regards storage, sea transport and distribution, both fixed and operating costs are retrieved from literature (Restelli et al., 2024). From the evaluation of CAPEX and OPEX of each stage of Figure 1, the key performance indicator for NH₃ value chain as H₂ carrier (C₁H₂) is defined by Eq(1) and denotes the expense [€] of transporting 1 kg of H₂ to the end user.

\[
C_{1H_2} = \frac{\text{CAPEX} + \text{OPEX}}{y_{\text{payback}} n_{\text{end, user}}} \tag{1}
\]

In Eq(1), a ten-year payback period \(y_{\text{payback}}\) is assumed; while \(n_{\text{end, user}}\) is retrieved from process simulations. On the other hand, for the NH₃ value chain as an energy vector, the key performance indicator is the cost of energy \(C_\epsilon\) as defined by Errore. L’origine riferimento non è stata trovata., representing the cost [€] of supplying 1 MWh of energy to the end user.

\[
C_\epsilon = \frac{\text{CAPEX} + \text{OPEX}}{y_{\text{payback}} n_{\text{end}} \cdot \text{LHV}_{\text{fuel}}} \tag{2}
\]
In EqErrore. L'origine riferimento non è stata trovata. \(m_{\text{fuel}}^{\text{end}} \) is the fuel flow rate at the end of the value chain, computed by the technical analysis, while \(LHV_{\text{fuel}} \) is the lower heating value of the fuel considered.

3. Results and discussion

Results of the technical evaluation of the NH\(_3\) value chain for H\(_2\) transport is illustrated in Figure 4, with blue arrows indicating the process streams, namely NH\(_3\) and H\(_2\), while filled arrows representing utilities (orange), fuels (red), and CO\(_2\) emissions (grey). NO\(_x\) emissions are neglected due to their minimal impact.

Figure 4. BFD of the green NH\(_3\) value chain as H\(_2\) carrier: scenario 1. CW: Cooling Water, RW: Refrigerated Water, IFO: Intermediate Fuel Oil, BOG: Boil Off Gas.

The technical evaluation reveals a significant difference in utility consumption among the cost-driving processes. NH\(_3\) synthesis proves to be more energy-intensive if compared to ammonia cracking, primarily due to the electric power required by compression to 200 bar in the reaction section. Additionally, the ammonia synthesis process utilizes refrigerated and cooling water to cool gases between compression stages and facilitate separations in the ammonia purification section. A daily boil-off gas (BOG) rate of 0.1% during maritime transport is assigned (Al-Breiki and Bicer, 2020). Therefore, the amount of ammonia at the unloading terminal is evaluated considering the number of days required by the seaborne transport. At the unloading terminal, NH\(_3\) cracking exhibits minimal external utility consumption owing to efficient process heat recovery. Notably, CO\(_2\) emissions are primarily associated with transport steps, with maritime transport responsible for 92% of total emissions. Consequently, the development of sustainable alternatives to fossil fuels in the shipping industry is imperative for mitigating climate change. The heat duty required by the reaction is provided by the NH\(_3\) – H\(_2\) mixture combustion. For this reason, the amount of H\(_2\) transported at the end of the value chain is lower than expected, due to the NH\(_3\) utilization as a fuel.

On the other hand, Figure 6 summarizes the results of scenario 2 and scenario 3 for NH\(_3\) application as energy vector. In each of the two configurations, the fuel production step does not require external utilities as the operating pressure aligns with that of the storage tanks, and internal heat recovery occurs between hot and cold streams in cracking processes. While pure ammonia fuel boasts the lowest Lower Heating Value (\(LHV = 18.6 \) MJ/kg for pure NH\(_3\) against \(LHV = 19.4 \) MJ/kg for partially cracked NH\(_3\)) among the produced fuel mixtures, it achieves the highest productivity due to the absence of product losses during evaporation.

Figure 5. BFD of the green NH\(_3\) value chain as energy vector: a) scenario 2 and b) scenario 3. CW: Cooling Water, RW: Refrigerated Water, IFO: Intermediate Fuel Oil, BOG: Boil Off Gas.
Figure 6. BFD of the green NH3 value chain as energy vector: a) scenario 2 and b) scenario 3. CW: Cooling Water, RW: Refrigerated Water, IFO: Intermediate Fuel Oil, BOG: Boil Off Gas.

The energy costs associated with the two produced fuels are as follows: 134.5 €/MWh for pure ammonia, 163.1 €/MWh for partially cracked ammonia. The distribution of energy costs among the various blocks of the green NH3 value chain as both H2 carrier and energy vector is illustrated in Figure 7. In the case of NH3 as energy vector, the costs evaluated pertain to the lower heating value of the fuel and do not encompass its utilization in a power generation plant, due to the absence of commercialized technologies. Consequently, the calculated energy costs serve as a foundation for future analyses, awaiting the availability of ongoing pilot projects on NH3 combustion at large scale.

Figure 7. Detail of cost distribution of NH3 value chain as a) H2 carrier and b) energy vector.

4. Conclusions

This study examines the potential applications of NH3 as both H2 carrier and energy vector within the present markets. The present cost of hydrogen transport (C\textsubscript{HV2}) through NH3 as H2 carrier is 6.61 €/kg\textsubscript{H2}. A cost reduction is expected in future, mainly because of the reduced electricity cost. NH3 production emerges as the cost driver of the whole value chain: optimizing the Haber Bosh process on such a small scale is crucial for promoting NH3 application as a H2 carrier. While the NH3 synthesis is designed referring to the standard Haber-Bosch process, it does not account for renewable energy source fluctuations. An analysis of the process performance with variable H2 feed could be crucial in assessing the plant flexibility. Lower operating pressure for the NH3 production could enhance the process flexibility. However, lower operating pressures of the reaction section result in reduced conversion per stage, prompting the investigation of potential alternatives to achieve higher NH3 production, such as nitric acid decomposition along the reactor (Spatolisano and Pellegrini, 2023). Together with NH3 synthesis, exploring cracking technologies operating at lower temperatures is thus of interest to reduce the energy consumption of the carrier decomposition stage.
The assessment of NH₃ as an energy vector involves analysing the costs associated with energy generation through fuel combustion obtained at the end of the value chain. Further examination of the environmental impact of the ammonia value chain would be needed, in view of its application as a climate change mitigation solution. Life Cycle Assessment (LCA), specifically, could ascertain the ammonia's validity as a green hydrogen carrier and energy vector, enhancing the accuracy of techno-economic analysis in environmentally friendly process design.

References

