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The Asia-Pacific region has been implicated as a major hotspot for plastic pollution in the world’s oceans, 

causing environmental and economic damage to marine ecosystems and maritime industries. In response to 

this challenge, cleaning vessels have been optimized to collect floating plastic waste before retrieval becomes 

more costly and difficult. However, prior vessel routing optimization studies focused solely on cost minimization 

without considering the yield of collected plastic waste critical to the goal of plastic elimination from the oceans. 

As such, a mixed-integer linear programming model called the sea-based waste collection routing problem was 

developed to maximize value recovery through a novel profit function. Two computer-generated instances with 

differing node sizes were used to illustrate the functionalities of the SB-WCRP. A modified ant colony 

optimization algorithm was constructed to arrive at near-optimal solutions within a reasonable computing time 

given the problem’s NP-hard nature. A benchmark with the branch-and-bound algorithm shows the modified ant 

colony optimization algorithm is suitable for large-case instances. Lastly, a sensitivity analysis on valuable 

fraction reveals the existence of a breakeven point that results in potential losses if not considered. 

1. Introduction 

The threat of marine plastics pollution continues to severely impact the Asia-Pacific region, with an estimated 

650,000 Mt of plastic or around 65% of the global output emitted into the ocean per year (Meijer et al., 2021). 

This problem has resulted to around 10.8 billion USD worth of damages for the maritime industry (McIlgorm et 

al., 2022), and have been ingested by as much as 1,400 species of marine organisms eventually causing death 

(Monteiro et al., 2022). In response to this challenge, the United Nations Sustainable Development Goal 14 (Life 

Below Water) included the prevention and significant reduction of marine plastic pollution among its targets by 

2025 (United Nations, 2015).  

Among many interventions across the plastics value chain is the retrieval of plastic waste already existing in the 

environment before it causes any further damage (Richon et al., 2023). The collection of plastic waste combined 

with other interventions will further reduce leakage into the environment and ultimately approach zero over time 

(Tee and Sy, 2023). As such, the sea-based waste collection routing problem (SB-WCRP) was developed to 

optimize the routing of vessels in the clean-up of FPL from the ocean. The problem takes its roots from the 

vehicle routing problem; however, collection points move in space and time due to winds and ocean currents. 

Duan et al. (2020) presents a three-stage framework that resolves this constant motion. The first stage estimates 

locations and weights of floating plastic litter (FPL) hotspots using remote sensing data. The second stage 

predicts the motion of the identified FPL hotspots in the first stage using wind and current data. Time windows 

are assigned to each hotspot which represents the earliest and latest time a vessel can collect debris before it 

drifts too far away. Lastly, the third stage uses the parameters derived from the first two stages to arrive at an 

optimal collection route for the vessel.  

Most of the models developed in the field focus solely on cost minimization as the main objective. The collection 

process involves the vessel traveling to various FPL hotspots and collecting debris within specified time 

windows, incurring fuel and operating costs, and finally returning to port to unload the debris, incurring fixed 

costs such as tugboat usage and dockage fees. Prior studies incorporate other kinds of costs such as additional 

fuel consumption from the weight of the vessel (Duan et al., 2021a) or the ocean currents (Duan et al., 2021b). 
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However, this paper argues that not only operational costs should be considered, but also the value recovery of 

waste. The value recovery is defined as the yield of plastic waste at the end of the collection period. This 

becomes especially critical to achieve the goal of zero plastics in the ocean (Jatinkumar Shah et al., 2018). 

Given the limitations of existing remote sensing technologies, there is a possibility that identified FPL hotspots 

may have a low valuable fraction, comprising of mostly natural debris. These are not valuable to a clean-up 

practitioner, as plastic waste is often targeted for its recyclability and high risks to the environment.  

Hence, this paper presents the sea-based waste collection routing problem using a novel profit function that 

incorporates the waste value recovery of plastic. The system's value recovery is determined by subtracting 

operating costs from the value of the collected plastic waste. A negative value recovery indicates losses, while 

a positive value recovery indicates gains. Two instances of the problem are solved using a modified ant colony 

optimization algorithm. Lastly, insights are drawn to provide recommendations for future studies in the field. 

2. Methods 

2.1 Problem Statement and Model Formulation 

Let directed graph 𝑉 = 𝐺(𝑁, 𝐸) represent the network of the SB-WCRP. The starting and ending nodes refer to 

the port where the vessel departs and unloads collection of marine debris. The remaining nodes of the network 

refer to the locations of the FPL hotspots. The Nomenclature section details the sets and parameters, while 

Table 1 summarizes the decision variables. 

Table 1: Decision variables for the SB-WCRP 

Variable Description Type 

𝑥𝑖𝑗 1 if the vessel traverses (𝑖, 𝑗) ∈ 𝐸; 0 if otherwise Binary 

𝑡𝑖
𝑎 Arrival time at debris location 𝑖 ∈ 𝑁  for the vessel Continuous 

𝑄𝑖
𝑤 Cumulative weight on collection vessel at debris location 𝑖 ∈ 𝑁  Continuous 

𝑡𝑖
𝑝
 Excess/deficit time at debris location 𝑖 ∈ 𝑁 Continuous 

𝑞𝑖
𝑝
 Penalty weight at debris location 𝑖 ∈ 𝑁 Continuous 

Map coordinates are used for FPL locations. Since the earth is an ellipsoid, the Haversine formula is used to 

calculate distance between two points (see Eq(1)). The constant R is the equatorial radius (6378.137 km). 

𝑑𝑖𝑗 = 2𝑅𝑎𝑟𝑐𝑠𝑖𝑛√sin
2 ((𝑑𝑗

𝑦
− 𝑑𝑖

𝑦) 2⁄ ) + cos(𝑑𝑦𝑗) cos(𝑑𝑦𝑖) sin
2((𝑑𝑥𝑗 − 𝑑𝑥𝑖) 2⁄ ) 

(1) 

The assumptions of the problem are outlined as follows: (1) clean-up time is linearly proportional to the plastic 

weight, (2) the effect of winds and waves on the vessel may be neglected, (3) plastic does not sink to the bottom 

during the collection period, and (4) linear cost penalties are applied upon failure to reach the FPL hotspot before 

the latest time, however, all debris are collected at the end of the period. A continuous MILP formulation is 

developed over the total planning period for marine debris collection as proposed by Duan et al. (2020). 

max𝑂𝐹 = 𝑓𝑤 ∑𝜆𝑞𝑖
𝑤

𝑖∈𝐸2

− ( ∑
𝑓𝑠𝑏𝑠𝑑𝑖𝑠𝑡𝑖𝑗𝑥𝑖𝑗

𝑣𝑎𝑣𝑒
(𝑖,𝑗)∈𝐸

+ ∑ 𝑓𝑐𝑏𝑐𝑡𝑖𝑥𝑖𝑗
(𝑖,𝑗)∈𝐸2∪𝐸3

+ ∑ ∑(𝑓𝑢)(𝑡𝑎𝑑 +
𝑄𝑛
𝑤

𝑘𝑢
− 𝑡𝑎𝑖)

𝑖∈𝑁1𝑑∈𝑁3

+ 𝑓𝑏 + 𝑓𝑢 + 𝑓𝑑) − 𝑓𝑝 ∑ 𝑞𝑖
𝑝

𝑖∈𝐸2∪𝐸3

  

(2) 

∑ ∑ 𝑥𝑖𝑗 = 1

𝑗∈𝑁2𝑖∈𝑁1

 (3) 

∑ 𝑥𝑖𝑗 = 1

𝑗∈𝑁2∪𝑁3

      ∀𝑖 ∈ 𝑁2 
(4) 

∑ 𝑥𝑖𝑗
𝑗∈𝑁2∪𝑁3

= ∑ 𝑥𝑗𝑖
𝑗∈𝑁1∪𝑁2

     ∀𝑖 ∈ 𝑁2 
(5) 

∑ ∑ 𝑥𝑖𝑗 = ∑ ∑ 𝑥𝑖𝑗
𝑗∈𝑁3𝑖∈𝑁2𝑗∈𝑁2𝑖∈𝑁1

 (6) 
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𝑄𝑖
𝑤 + 𝑞𝑗

𝑤 ≤ 𝑄𝑗
𝑤 + 𝐶𝑤(1 − 𝑥𝑖𝑗)      ∀(𝑖, 𝑗) ∈ 𝐸 (7) 

𝑞𝑖
𝑤 ≤ 𝑄𝑖

𝑤 ≤ ∑ 𝑞𝑖
𝑤

𝑖∈𝑁2

       ∀𝑖 ∈ 𝑁2 
(8) 

𝑄𝑖
𝑤 = 0       ∀𝑖 ∈ 𝑁1 (9) 

𝑏𝑠 (∑ 𝑡𝑎𝑑 − ∑ 𝑡𝑎𝑖
𝑖∈𝑁1𝑑∈𝑁3

)+ (𝑏𝑐 − 𝑏𝑠) ∑ ∑ 𝑡𝑖𝑥𝑖𝑗
𝑗∈𝑁2∪𝑁3𝑖∈𝑁2

+ 𝑏𝑐 ∑ ∑ 𝑡𝑑𝑥𝑖𝑑
𝑑∈𝑁3𝑖∈𝑁2

≤ 𝐶𝑓 

(10) 

𝑡𝑎𝑖 +
𝑑𝑖𝑠𝑡𝑖𝑗

𝑣𝑎𝑣𝑒
≤ 𝑡𝑎𝑗 +𝑀𝑖𝑗(1 − 𝑥𝑖𝑗)       ∀(𝑖, 𝑗) ∈ 𝐸1 

(11) 

𝑡𝑎𝑖 + 𝑡𝑖 +
𝑑𝑖𝑠𝑡𝑖𝑗

𝑣𝑎𝑣𝑒
≤ 𝑡𝑎𝑗 +𝑀𝑖𝑗(1 − 𝑥𝑖𝑗)       ∀𝑖 ∈ 𝑁2, ∀(𝑖, 𝑗) ∈ 𝐸2 ∪ 𝐸3 

(12) 

𝑡𝑖
𝑝
= 𝑡𝑖

𝑙 − 𝑡𝑎𝑖 (13) 

𝑞𝑖
𝑝
≥ −𝑡𝑖

𝑝
 (14) 

𝑥𝑖𝑗 ∈ {0,1}        ∀(𝑖, 𝑗) ∈ 𝐸 (15) 

𝑡𝑎𝑖 , 𝑄𝑖
𝑤 , 𝑡𝑖

𝑝
, 𝑞𝑖
𝑝
≥ 0       ∀𝑖 ∈ 𝑉 (16) 

The objective function maximizes the total value recovery of the collection process as seen in Eq(2). The first 

term refers to the value of collected marine debris. The second term refers to the usage costs, and the fixed 

costs of berthing, unloading, and tugboat use. The last term refers to any penalty costs if the vessel violates any 

time windows. (Eq)3 to (Eq)6 describe the flow continuity constraints of the vessel. Eq(7) describes the 

cumulative weight of the vessel as it collects debris from point to point. Eq(8) assures that collected debris does 

not exceed the actual debris on the ground. Eq(9) initializes the collection at the origin port to zero. Eq(10) limits 

operations to the fuel capacity of the vessel. Eq(11) and Eq(12) calculate the arrival time of the vessel. Eq(13) 

and Eq(14) present the penalty function. Lastly, Eq(15) and Eq(16) describe the binary and continuous variables 

of the model, respectively. 

2.2 Modified Ant Colony Optimization Algorithm 

A modified ant colony optimization (mACO) algorithm is developed given the problem’s NP-hard nature to arrive 

at near-optimal solutions within a reasonable amount of time (Islam and Rahman, 2012). This becomes 

particularly relevant when node sizes increase, and exact methods take significantly long to arrive at solutions. 

The branch-and-bound (B&B) algorithm is used to benchmark the mACO algorithm to illustrate the efficiency of 

the latter for higher node sizes. Both algorithms were implemented on MATLAB2024a with a MacBook Air M1 

chip. 

2.2.1 Set Initial Parameters and Create New Ant Colony 

The number of iterations 𝑛, ants 𝑘 ∈ 𝐾, initial pheromone matrix 𝜏, and desirability function 𝜂 are set to start the 

loop. The ants randomly select a closed-loop pathway, where selection of the next node follows a probability 

function 𝑝𝑘 detailed in Eq(17). The relative importance of the pheromone 𝛼 and relative importance of the fitness 

function 𝛽 quantify the bias of ants selecting the next node. 

𝑝𝑘(𝑖, 𝑗) = {

[𝜏𝑖𝑗]
𝛼
[𝜂𝑖𝑗]

𝛽

∑[𝜏𝑖𝑗]
𝛼
[𝜂𝑖𝑗]

𝛽

0, 𝑖𝑓 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

   

(17) 

2.2.2 Calculate the Fitness Values of the Ant Colony 

After each ant selects a route, the fitness value is calculated accordingly. A conditional fitness function is 

described in Eq(18). If the arrival time exceeds the time window, then a cost penalty is added to the fitness 
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function. However, if the time window is satisfied, then no penalty is incurred. The ant with the best fitness 

function is the optimal solution for this iteration but is improved with updating the pheromone matrix. 

 

𝜂𝑖𝑗 =

{
 
 

 
 𝑓𝑤𝜆𝑞𝑖

𝑤 − [
𝑓𝑠𝑏𝑠𝑑𝑖𝑠𝑡𝑖𝑗𝑥𝑖𝑗

𝑣𝑎𝑣𝑒
+ 𝑓𝑐𝑏𝑐𝑡𝑖𝑥𝑖𝑗 + (𝑓

𝑢)(𝑡𝑎𝑑 + 𝑡𝑑 − 𝑡𝑎𝑖)] − 𝑓
𝑝𝑞𝑖

𝑝
, 𝑖𝑓 𝑡𝑎𝑖 < 𝑡𝑖

𝑒 𝑜𝑟 𝑡𝑎𝑖 > 𝑡𝑖
𝑙

𝑓𝑤𝜆𝑞𝑖
𝑤 −[

𝑓𝑠𝑏𝑠𝑑𝑖𝑠𝑡𝑖𝑗𝑥𝑖𝑗

𝑣𝑎𝑣𝑒
+ 𝑓𝑐𝑏𝑐𝑡𝑖𝑥𝑖𝑗 + (𝑓

𝑢)(𝑡𝑎𝑑 + 𝑡𝑑 − 𝑡𝑎𝑖)] , 𝑖𝑓 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

(18) 

2.2.3 Update Pheromone Matrix 

The pheromone matrix is reduced by evaporation using rate 𝜌. Afterwards, the fitness values for each ant in the 

colony are added to update the pheromone matrix for this iteration in Eq(19). A new colony is generated again 

to repeat the process until all iterations are completed and the solution converges. 

𝜏𝑖𝑗
𝑘 = (1 − 𝜌)𝜏𝑖𝑗 +∑Δ𝜏𝑖𝑗

𝑘

𝑚

𝑘=1

 
(19) 

2.3 Model and Algorithm Parameters 

Two instances of varying node sizes are developed to illustrate the model’s functionality and the mACO 

algorithm’s performance. The node sizes were selected based on prior calculations, where a drastic change in 

computing time was measured when six nodes were increased to seven. As such, the small instance was set 

at six nodes, while the large instance was set at twelve nodes. The instances (Table 2) and the vessel and 

algorithm parameters (Table 3) were either generated or derived from prior studies (Duan et al., 2020).  

Table 2: Small and large instances (LN – longitude in decimal, LT – latitude in decimal, M – mass in kg, V – 

volume in m3, ET – earliest time in hh:mm, LT – latest time in hh:mm) 

 Small instance Large instance 

Node LN LT M V ET LT LN LT M V ET LT 

Port 120.942 14.632 - - 8:00 18:00 120.942 14.632 - - 8:00 18:00 

1 120.906 14.648 184.242    0.196     8:00 13:00 120.802 14.584 33.508 0.035     8:00 13:00 

2 120.849 14.641 44.291    0.047     8:00 13:00 120.728 14.655 134.947 0.143 8:00 13:00 

3 120.867 14.653 60.949   0.064     8:00 12:00 120.752 14.539 136.411 0.145     8:00 12:00 

4 120.848 14.603 144.900    0.154     8:00 17:00 120.875 14.525 140.396 0.149     8:00 17:00 

5 120.930 14.608 92.485   0.098     8:00 16:00 120.833 14.694 53.473 0.057     8:00 16:00 

6 120.899 14.627 222.340 0.236 8:00 11:00 120.776 14.594 702.587 0.748     8:00 11:00 

7 - - - - - - 120.725 14.523 37.268 0.039 8:00 13:00 

8 - - - - - - 120.695 14.652 629.182 0.670     8:00 13:00 

9 - - - - - - 120.940 14.568 209.847 0.223 8:00 12:00 

10 - - - - - - 120.889 14.514 59.178 0.063     8:00 17:00 

11 - - - - - - 120.807 14.732   43.352 0.046     8:00 16:00 

12 - - - - - - 120.837 14.601 36.261 0.038 8:00 11:00 

Table 3: Model and algorithm parameters 

Variable Value Variable Value Variable Value Variable Value 

𝑓𝑏 14 USD/hr 𝑓𝑢 90 USD 𝑏𝑐 30 L/hr 𝑛 1000 

𝑓𝑑 7.5 USD 𝑣𝑎𝑣𝑒 15.465 km/hr    𝑏𝑠 50 L/hr 𝑘 300 

𝑓𝑡 450 USD 𝐶𝑤   10000 kg 𝑓𝑐 1.5 USD/L 𝜌 0.85 

𝑓𝑤 50 USD/kg 𝐶𝑓 10000 L    𝑓𝑠 3 USD/L 𝛼 1 

𝑓𝑖
𝑒 50 USD/hr 𝑘𝑐 180 kg/hr    𝜆 1 𝛽 1 

𝑓𝑖
𝑝
 50 USD/hr 𝑘𝑢 300 kg/hr        

3. Results and Discussion 

Table 4 highlights the best profits and routes of the small and large instances. The best profit refers to the 

optimal profit calculated by the value recovery function. The route details the order of the vessel from the port 

to the nodes and ending at the port in a closed loop. Two algorithm performance indicators are also summarized 
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in Table 4 to quantify algorithm performance. The Optimality Gap column refers to the percent difference of the 

calculated solution with the optimal solution. The Time column refers to the computing time to arrive at the 

solution to evaluate the algorithm’s performance. For the small instance, both the mACO and B&B algorithms 

have comparable performance, by converging at the same route and best profit with the same optimality gap 

and time. However, the computing time of the mACO algorithm for the small instance is approximately 63 times 

longer than the B&B algorithm, revealing that exact methods may be more ideal for lower node sizes. For the 

large instance, the use of the mACO converges to a near-optimal solution with an optimality gap of 6.03%, which 

is greater than the optimality gap of the B&B algorithm. Despite this, the mACO arrives at a solution within a 

reasonable amount of time compared to the exact solution which takes approximately 60 times longer. Hence, 

the mACO can be used to arrive at near-optimal solutions in a reasonable amount of time for large instances of 

the problem. Exact methods to arrive at the optimal solution may take too long for incremental increases in profit 

that may not be significant for the decision maker, which in this case is only 1.5% less than the result of B&B. 

Table 4: Instance solutions and benchmarking results 

 mACO Algorithm B&B Algorithm 

Instance Best Profit (USD) Optimality Gap (%) Time (s) Best Profit (USD) Optimality Gap (%) Time (s) 

Small 35,294 0.19 82.09 35,294 0.19 1.31 

 
Route: Port → 6 → 1 → 3 → 2 → 4 → 5 → Port 

 

Route: Port → 6 → 1 → 3 → 2 → 4 → 5 → Port 

 

Large 101,610 6.03 87.38 103,170 4.27   5344.14     

 
Route: Port → 10 → 9 → 4 → 5 → 11 → 

8 → 2 → 7 → 3 → 1 → 12 → 6 → Port 

Route: Port → 9 → 10 → 4 → 12 → 1 → 

7 → 3 → 6 → 2 → 8 → 11 → 5 → Port 

 

Figure 1 illustrates a sensitivity analysis for the small instance by altering the fraction of valuable waste in the 

FPL hotspot 𝜆. The nominal values for weight in Table 2 assume that all collected debris are composed 

completely of plastic. This is not a realistic case as quantified by the valuable fraction measured at the end of 

the collection period. When the valuable fraction decreases, the profit decreases up to a breakeven point of 

0.05784 where the cleaning operation results in losses. This relation holds true for the assumed value of waste 

at 50 USD/kg, but losses are expected at higher valuable fractions for lower waste values. As such, decision 

makers can decide whether to implement the clean-up operations if the predicted fraction of valuable waste is 

expected to result in gains or losses depending on the plastic pollution load or if the market for recyclable plastic 

waste is very positive.  

 

  

Figure 1: Change in profit of the small instance after change in fraction of valuable waste.  

4. Conclusions 

The SB-WCRP developed in this paper is the first to utilize the value recovery of plastic waste for clean-up 

operations in the ocean, balancing plastic recovery with fixed and operational costs. On a practical note, the 

value recovery function can provide decision makers an idea whether the collection should push through 

depending on the conditions that cause the operations to breakeven, as seen in the results. The small instance 

resulted in a profit of 35,294 USD with an optimality gap of 0.19%, while the large instance resulted in a profit 

of 101,610 USD with an optimality gap of 6.03%. For the small case study instance, a breakeven point of 0.0578 

valuable fraction was calculated, meaning the operations would be profitable if at least 5.78% of the FPL 

hotspots were composed of plastic. A modified ant colony optimization algorithm was developed to arrive at 

near-optimal solutions within a reasonable amount of time especially for large case instances, converging 60-

times faster than exact methods. This comes at the cost of sacrificing incremental profit, however, this may be 
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insignificant to a decision maker with a 1.5% decrease in the large instance case study. On the other hand, 

exact methods such as the B&B algorithm can be used for small case instances given faster convergence while 

guaranteeing the optimality of solutions. The following recommendations are provided for future studies of the 

SB-WCRP: (1) consider the uncertainty in model parameters by adopting a stochastic or robust optimization 

approach, (2) consider a fleet of vessels to reduce penalty costs, and lastly, (3) consider other metaheuristic 

algorithms that may converge more efficiently compared to the ant colony optimization algorithm. 

Nomenclature

N1 – Set of the origin port, {0} 

N2 – Set of predicted locations of MPP hotspots, 

{1,2,… , 𝑛} 

N3 – Set of the destination port, {𝑛 + 1} 

N – Set of all nodes, 𝑁1 ∪ 𝑁2 ∪ 𝑁3 

E1 – Set of all edges that connect the origin harbor 

to the predicted MPP hotspots, {(𝑖, 𝑗)|𝑖 ∈ 𝑁1, 𝑗 ∈

𝑁2} 

E2 – Set of all edges that connect the predicted 

MPP hotspots to other MPP hotspots, {(𝑖, 𝑗)|𝑖, 𝑗 ∈

𝑁2, 𝑖 ≠ 𝑗} 

E3 – Set of all edges that connect the predicted 

MPP hotspots to the destination harbor, {(𝑖, 𝑗)|𝑖 ∈

𝑁2, 𝑗 ∈ 𝑁3} 

E – Set of all edges, 𝐸1 ∪ 𝐸2 ∪ 𝐸3 

𝑡𝑖 – Collection time at debris location 𝑖 ∈ 𝑁2 

𝑡𝑑 – Berth time at destination harbor 𝑑 ∈ 𝑁3 

𝑓𝑏 – Berth cost at destination harbor 𝑑 ∈ 𝑁3 

𝑓𝑑 – Dockage cost at destination harbor 𝑑 ∈ 𝑁3 

𝑓𝑡  – Tugboat cost at destination harbor 𝑑 ∈ 𝑁3 

𝑓𝑤 - Revenue for each kilogram of collected 

debris 

𝑓𝑖
𝑒 – Penalty cost per hour from earliest time 

window 

𝑓𝑖
𝑝
 – Penalty cost per hour from latest possible 

time 

[𝑡𝑖
𝑒 , 𝑡𝑖

𝑙] – Time window of debris location 𝑖 ∈ 𝑁2 

𝑓𝑢 - Hourly usage cost of collection vessel 

𝑣𝑎𝑣𝑒 - Average sailing velocity of collection vessel 

𝐶𝑤 - Weight capacity of collection vessel 

𝐶𝑓- Fuel tank capacity of collection vessel 

𝑑𝑖𝑗 − Length of edge (𝑖, 𝑗) ∈ 𝐸 

𝑏𝑐 - Hourly fuel consumption of collection vessel 

during collection or berth at destination harbor 

𝑏𝑠 -  Hourly fuel consumption of collection vessel 

during sailing 

𝑓𝑐 - Hourly fuel cost of collection vessel during 

collection or berth at destination harbor 

𝑓𝑠 - Hourly fuel cost of collection vessel during 

sailing 

𝜆 - Fraction of valuable waste in FPL hotspot
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