Nanocellulose Based Facilitated Transport Membranes for CO<sub>2</sub> Separation
Venturi, D.
Ansaloni, L.
Giacinti Baschetti, M.
Download PDF

How to Cite

Venturi D., Ansaloni L., Giacinti Baschetti M., 2016, Nanocellulose Based Facilitated Transport Membranes for CO2 Separation, Chemical Engineering Transactions, 47, 349-354.
Download PDF

Abstract

In the present work the performance of a new membrane material, based on Microfibrillated Cellulose (MFC), was investigated in view of its use in CO2 separation applications. In particular the membranes were obtained by casting, from a solution of carboxymethylated MFC and Lupamin (a Polyvinylamine produced by BASF), followed by a thermal treatment at 105 °C. Permeability of CO2 and CH4 were measured at 35 °C as a function of relative humidity and water sorption experiments were performed as well to relate the previous results to the actual water content in the membrane. As a reference, pure MFC films have been also prepared and their gas permeability tested in the same conditions. The overall results suggest that both MFC and MFC-Lupamin films have really interesting performance for the CO2/CH4 separation showing very high selectivity values (higher than 400) which place both materials well above the trade-off curve of 2008 Robeson’s plot. In particular MFC films showed higher maximum selectivity but lower average CO2 permeability with respect to the MFC-lupamin blends probably because of the different level of water absorbed by the two materials. Pure MFC indeed never exceeded 10% water uptake, while the Polyvinylamine blend showed water sorption very similar to the previous material up to 60% RH; it then definitely increased, reaching a mass uptake higher than 50% at the maximum water activity inspected.
Download PDF