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In this paper a c? interpolation scheme on a triangle is presented. The interpolant assumes given values and
derivatives of orders up to 2 at the vertices of the triangle. It is made up of partial interpolants blended with
weight functions. Any partial interpolant with respect to a vertex is a piecewise quintic defined on a split of the
triangle and interpolates the data at the vertex and on the two sides sharing the vertex, while the corresponding
weight function is a rational polynomial in the barycentric coordinates. The resulted interpolant is a piecewise
rational polynomials. By using the Bernstein-Bezier representation of polynomials, the interpolant is easy to
describe and evaluate.

1. Introduction

Local interpolation over triangulations has received widespread discussion as a tool for use in free-form surface
design in Computer Aided Geometric Design, finite element computation, and scattered data processing. The
general setting for local interpolation of a prescribed smoothness is to setup a model on one single
representative triangle. In order to attain global smoothness on the whole triangulation, a successful model
must allow the interpolants on any two adjacent triangles satisfying the prescribed smoothness across the
common edge. For the sake of computation, the interpolant has to be simple enough and could be a polynomial,
a rational polynomial, and even their piecewise versions defined on a split of the model triangle.

In practice, the c' and C? models are of essential importance. There have been many c' schemes but few for
C? ones; see Farin (1986), Farin (1990), Goodman and Said(1991), Peters (1990), and Strang and Fix (1973).
Since C? schemes supersede C' ones in better approximation and visual effect (esthetic feeling), endeavor has
been paid in designing C? schemes (Alfred, 1984; Wang, 1992).

In general, a C' scheme of polynomial requires vertex data of order 2r, and the degree of the polynomial can
reach 4r +1. So for a C* scheme, the derivatives assigned at vertices must be of orders up to 4 and the degree
of the polynomial has to be 9 (Zenisek, 1970). Higher degrees mean more complexity and instability. Ideas to
overcome this are to use rational polynomials or to split the macrotriangle into microtriangles on which a c?
spline is to be defined; see Alfred (1984) and Zhan (1996) for instance.

The drawback lying in the splitting trick is that the splitting causes more microtriangles. For this, a rational
polynomial interpolant can be adopted. Alfeld and Barnhill (1984) developed a transfinite c? scheme the
discrete version of which results in rational interpolant. Liu and Zhu (1995) characterized C? rational schemes
and presented certain C? discrete triangular interpolants. Similar schemes can be found in Zenisek (1970).
The rational approach is able to prevent the triangle T from being split. Nonetheless, this approach exhibits a
possible flaw that the degrees of the denominator and numerator could still be very high. For instance, for the
scheme with quintic precision in Whelan (1986), the rational interpolant has degrees (9, 4) of the pairs of the
denominator and numerator.

By combining the rational formation with the splitting technique, in the present paper, we’ll develop a c?
scheme in a quite natural way. The interpolant is a weighted sum of three partial interpolants, each of which is a
c? piecewise quintic on a split of the triangle T with respect to a vertex. And the weight functions are rational
polynomials of degrees (2, 2). Then the degrees of the resulted interplant are (7, 2).

The paper is organized as follows. In §2, as a preliminary, we formulate bivariate quintics in Bernstein-Bezier
forms. Then in §3, the c? triangular interpolation scheme is described and the explicit formulation of the
interpolant is displayed in §4. At last, a conclusion is made in §5.
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2. A formulation of quintic polynomials

Take T = AoA1A2 as a triangle. Let e;= Ai+1Ai+2 denote the opposite edge of A; and n; the outer normal vector of e;,
i =0,1,2, counting modulo 3. For a = (p, q) with |a|= p+q, denote by D’ the partial differential operator 8" / ox°
dy" . Suppose f eCZ(T). For a C? scheme, an interpolant geCZ(T) of f must at least satisfies D°(g—f )(A) =0, 0
<|a] £2,ieZs. Let Aie R% i e Zs, form a triangle T = ApA1A2 = R?. For A = (X, y)eR?, denote by u = (Uo, Ui, Up) its
barycentric coordinates (see Farin (1986) for the detail) with respect to Ao, A1, and A2 (orto T ), i.e.
A=UoAg+uiA1+UA,, with , Ug+uy +ux= 1.

An index A = (Ao, A1, A2), Ai €Z+, has length |A] = Ao+ A1+ A2. A polynomial p in Py, the set of all the bivariate
polynomials of degrees up to k, can be expressed in Bernstein-Bezier form (short for B-form)

P(U) =P (% Y)=Tpe B W) Bia(W)= 75 M py o U U

where b, is the B-ordinates at index A with the Bernstein basis function By A(u).

Let ec R? be a vector e=6pA¢ + 6:1A1 + B2A2, with B+ 61+ 6,=0, and 6 = (6o, 61, 62). Take & = (1,0, 0), &1 = (0, 1,
0), and &2= (0, 0, 1). Define recursively

k!
E‘II A+g 0 | A |_

b® =b,, |Alk; by =
A W 1Al A (k_r)!iez3

Then the r-th derivative of p along direction e is formulated as

d"'® p(u) =

k! (r)
Ty OB ).

Take ei = Ai+1Ai+2 as the vector from Ai+1 to Air2 opposite to A;, i € Zs. Then n; = eir2 — hj ej with h; = (ej*eir2)/(ei *€i)
is an outer normal vector to e;, i € Z3. Let

Vi =(Au+AR) 2 Vig=2A 1+ AL2) 3 Vig = (A4 +2A,,)/3.

Taking A= {A = (Ao, A1, A2); [N = B}, Ai={A eN\; N2 3}, Ay =Ui o, Aand A ={(1,2,2),(2,1,2),(2 2, 1)}, and
Ei =P(A), Fj = dya PA), Gy = dyn da PIA), 111 KEZs, 5,k #,

we have (Farin, 1990)

Lemma 2.1 Let p be a quintic of the form p(u) = Z b,B; , (u)- Define q(u) = ZAGA b,B;, (u)- Then

4=5

q(u) = Z Eg (u)+ Z Fio; (U) + ZGijk("ijk (u)

ieZ, i,jeZsi#] i,j,keZgk,j#i

where

@, (u)=u’(10-15u; +6u?), @ (u)=ulu;(4-3u;), i=]j,

c1’.1,(U)— uluf, iz, Pe=uluu i)k} ={012}.

J ’

This lemma implies that the B-coordinates of p with indices A, are determined by the data assigned at the
vertices of T. Further, given 3 normal derivatives on one side of T, the B-ordinates with /A; can be determined.
Precisely, we have, for instance.

Lemma 2.2 On the basis of Lemma 2.1, b122, b212 and b4 are determined in addition by 6n0 p(Vy), éﬁo pP(Vo1),

and 02,p(Vop),

8
P12 :_Eﬁnop(\/o) 6[ (Drgg +4bygy +4byg +bygs +(14hy) (Bosp + 401 +Bbygy +4bgs + gy )
—hg(Bo4y +4bggp +6bgz + 4y +bres )], H

3 5 1 3
Py = 5[2550 P(Vor) - 6§0 PVo2 )] - 5 b + 3 b} —b%B) s by = %[2550 P(Ve2) -9 p(Vo1 N = b003 +3 3 b -b) .
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Lemma 2.3 With the assumptions that anop and aﬁop on edge eg reduce to polynomials of degrees 3 and 1,

respectively, the formulas in Lemma 2.2 are replaced with

1
P :g[(—bmo +4Dy5) +4by13 —bygy ) +(1+hg )(bgsy +4bgsr + 60y =40z + D14 ) —ho (Dpay — 40z, +Bb3 — 4y +bos )1,
Py = (2b(():23()) + b(()(z)% )3- b(();), b = (Zb(()(z)% + b(()g()) )/3*b(()%%-

In the sequel, we’'ll use b;, Ae Ac, to specify the B-ordinates b, obtained with respect to the data on the
edge e, i € Zs.

3. The C?interpolation scheme

In this section, we’re presenting a c? interpolation scheme. Given a triangulation 7 of a polygonal region Q = R?,
and integers k and r, k = r 2 0, the spline space of piecewise C' polynomials of degree k is defined as (Wang,
2001)

Sk(1)=Si(1,Q)={s eC"(Q);s |,€ P, 0 being any triangle in 7 }.

3.1 Partial interpolants

For the triangle T = AjA1Az, take

Bim =(1-tin )AL +tinALe, O<ty <t <1 ieZ;, m=12.

For any i e Zs, by connecting Ai and Bim, m = 1, 2, we form a split 4, of T with subtriangles Ti1 = AA+1Bi1, Tio =

ABi1Bi2, and Tiz = AiBipAi+2. See Figure 1. By using cofactor conforming approach developed by Wang(2001),
it's easy to verify that dim S2(4 ) =33.

40

.
LR N
sepes e

"Tor | Toz Tos CEEQOOOH*

A Bn B A V
Figure 1: The partial split AO Figure 2: The stencil of {bA; 1,1=1, 2, 3}

Now consider the following partial interpolation problem for i € Zs.
Interpolation Problem (P) For f € C*(T), find s, € SZ(4) such that

D"(si—f)(AJ-)=0, 0<alc2 jeZ;; (1)
0, (5 —F)V1)=0, 3 (S, ~F)(Vin) =0, | #i, I €Z5, m=12,3 )

Suppose si is an interpolant of (P), denote s; = si|ti, fori e Zzandi=1, 2, 3.
Note that the number of conditions given in problem (P) is 27, which is 6 less than the dimension of the

underlying interpolation space SZ(4). So, for the interpolant of (P), if it exists, to be uniquely determined,

additional restrictions must be imposed on the interpolation.
For the sake of simplicity, without loss of generality, the discussion in this subsection is only on Ao. Suppose s
is an interpolant of (P) and

Soi = 2. buBsa(y;) (3)
IA=5

where u; = ( Up,, U1, U2y ) are the barycentric coordinates of point (X, y) € R? with respect to Ty
Note that for any A = (x, y) € R?,

A =UgAg + Uiy +UpAg = Ug1Ag +UygAy +UzqBor = Ug oAy +UgoBog +Uz5Bop = UgaAg +UssBop +UpsAy,

and then up = Ug:1 = Up:2 = Up:3. Base on this observation, each sg can be written as
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3.(5) 5«
Sg(u) = Z[kjuo Oy (U, Uy )

where gi.1( U1, Uz:1 ) is a (univariate) polymomial of degree k, which can be seen as the k-th layer of sg. This
allows s another formulation

5
So(u) = Z(Sjuc?_kgk(uvuz)
ko K
where gk is a univariate piecewise polynomials of degree k, k=0, 1, ..., 5, with successive pieces gk 1, gk. 2, and
Ok 3, defined on the partition 0 < to1 <tp2< 1.

The supports of the B-ordinates are depicted in Figure 2. From Lemma 2.1, the B-ordinates marked with e are
determined by conditions (1), and from Lemma 2.2, the conditions (2) in addition determine those marked with *
in Figure 2.

In particular, the gk with k =0, 1, and 2, are all overall polynomials determined by conditions (2) and it is easy to
see that, with C relations, g3 is uniquely solved by the previously determined B-ordinates. Refer to Schumaker
(1981) for univariate splines.

For g4and gs, we make the following convention that

(i) gs reduces to an overall quintic;

(ii) ga is under C? relations and some two successive pieces of g4 reduce to a quartic.

Under restriction (i), gs is obviously determined by conditions (1). The rule (ii) means that g4 is a C* cubics of
two pieces with 6 parameters, just the same as the number of * and e on g4. Then we conclude that

Theorem 3.1 Under the restrictions (i) and (ii), there uniquely exists an interpolant s eSsz(AO)satisfying the
conditions (1) and (2).

3.2 The macro interpolants

Similar to s, the partial interpolants s, e S2(4,) and s, e S2(4,) of (P) are obtained uniquely under (i) and (ii).
From the discussion above, we can also see that the partial interpolants s;,i € Z;, hold

si|ei=si+1| e =si2]ei, agisi+1|ei= 6Lisi+2|ei,r=1,2.

Define weight functions w; (u) =u? /(uZ +u? +u?), i eZ,. Obviously, these functions have the properties that
w; eC”, Zidawi (u)=1,w;(u)|,=0,and 3, w;(u)|, =0, i €Z;.

Sor U Spz(U) Sgz(U)
Figure 3: The stencil of sq in the uniform BCS u.

Now it's ready to the main result of this paper.
Theorem 3.2 Suppose s, 6552(4 ), i €Z5, are interpolants of (P) for f eCz(T) under the restrictions of (i) and
(ii). Then the blending function

fr (u)= 2 wi(u)s;(u) (4)

ieZg
satisfies that
Dy —f)(A)=0, 0<|a|<2 ieZ, (5)

By (r =F)V))=0, &2 (f —F)(Viy)=0, i €Z5, m=12.

Still, a;ifT |e;, ieZ;, are polynomials of degrees 5 - r, r = 0, 1, 2. In addition, fr reproduces polynomials of
degree 5.
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Theorem 3.3 Suppose s, €SZ(4), i €Z,, satisfies D(s; -f)(A))=0,04alk2 jeZ; 0,5 | and 8§|si | e
are of degrees 3 and 1, respectively, | =i, | € Z;. In addition, suppose s;, i € Z;, are under the restrictions of
(i) and (i), and fr is defined as in (4). Then fr reproduces polynomials of degree 3 and satisfies (5). On e;,

A

o, f and aﬁ‘f , 1e€Zy are polynomials of degrees 3 and 1, respectively.

rll

The usage of rational functions can be dated back to the well-known BBG scheme (Barnhill et al, 1973) and
Nielson’s side-vertex scheme (Nielson, 1979). The interpolation schemes in Liu and Zhu (1995) and Xu, et al
(2000) can also be regarded as side-vertex schemes, since a partial interpolant on a triangle in those schemes
interpolates data at a vertex and on its opposite side. In our method, a partial interpolant interpolates data on
two sides sharing a vertex and then our interpolation can be called a side-side scheme. The weight functions
used in side-vertex schemes and in side-side schemes are different. For instance, the weight functions used in
Liu and Zhu (1995) are

202 101202 4 112012+ 1202)
Wi (U) = U7 4U7 o /(Uguy +UrU; +UsU3), T eZ;.

Obviously, the macro interpolant as a whole is a piecewise rational function with degrees (7, 2) for the pairs of
the denominator and numerator. By contrast, for the scheme with quintic precision in Liu and Zhu (1995), the
rational interpolant has degrees (9, 4).

4. Evaluation of the interpolant

Suppose f € CX(T). Let q(u) = ZAE/\V b,Bs 4(u) be the polynomial in Lemma 2.1, with the symbol p replaced with f.
Then q is nothing but the polynomial interpolating function f at the vertices of T such that

D(q-f)A)=0, 0<|a|<2 ieZ,.

Now fix one i e Zs. By assigning o, (p-f)\V;)=0, 82f(p—f)(Vin)=0,m=12, the B-ordinates b, A</, can be
determined via Lemma 2.2.

Continuing the preceding, we will give an expression of the partial interpolant s, e S2(4), i € Z;, and hence

the macro interpolant fr . In order to express s;, owing to the symmetry, we only illustrate the formulation of s,
and the others can be obtained by rotation with the index i.
Note that a B-form polynomial in a barycentric coordinates system (BCS) can be expressed in any other BCS

with an affine transform between the two systems. For the interpolant s, € SZ(4,), we prefer to write
S(5 5-k 6
Soi(U) =50 [ Toy = 2 by Bsp(u) =2 K Up D (UpUz), 1=12,3 (6)
|AI=5 k=0

in the uniform BCS u with T rather than that with T, as in (3). This form has the advantages that
b1z = b2212~ Dot = b1222s D14 = b2221: Bigp 3 = b;21‘ b3 = b;m, Br12.3 = b112223

by =by for Ay#12 1=123;, by,=b,, for Ae/A; byz3=b,, for AcAh,.

Since the segments AgBo1 and AgBo2 are on the lines

[ vistou ==ty Tt vy =ty —(1-tg Uy,

respectively, we can write

So(u)= zb/\Bs,A(U) +1 0”593(”11“2 )+5UgQ4(Uy,Up) (7)
N5, A #1,2

where g3 and g4 are piecewise C? cubics and quartics in us and up, and

Oa1, Y120, Oas V120,
03 =103, V1<0<y,, 04 =404, V1<0<yy,
Oa3s V250, O43, V250,

4.1 The representation of gs
The unknown B-ordinates for gs include b2os:1, b23o:2, b221:2, b212:2, b203;2, and bazo3. We only provide the formula
of bzos.1 and the other can be derived similarly.
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The C? smoothness of g3 implies that there are two numbers ¢4 and ¢z, such that
a1 (U, Up ) + ¢4y (U, Uy )= O32(Us,Up),  Oap(Uy,Up) +Colyo (U, Uy )0 = O35 (Us,Up).

Identifying the coefficients of us and u; in these equations, we get

(D213 = 0291:1 top = 1) = (D219.3 = boga ey c,= (Ba13 =014 )tor = 1) = (Bo12.5 = Do oy
to1(tor = (tox —tor) too(top = N(to1 —to2)

1

bags 1 = Bagss — ity = 1) —Co(ter —1)°.

4.2 The representation of gs
Under (ii), g4 is of c?, and two pieces of g4, €.9. 941 and g4 are identical, i.e.

941 (U Up) = Gap (U Up), - G (Ug, Uy )+ Ay (U Up )Y = s (U U),

where d is the C> cofactor of g4 on I, .Then

D1op.0 —Dyos.
d, =M » Brig =Dz + ot (1-tg ), Do =Bioa;s +dx(1- 1, ).
too (1-tg)

The other B-ordinates b140;2, b131;2, b122;2, b113;2, D10s;2, D140;3, and biz1;3 are formulated similarly and omitted
here.

5. Conclusion

We have shown in this paper a C? local interpolation method and the detailed representation of the interpolant.
In literature, Alfeld (1984) developed a C? scheme on the so called twice HCT split for only C* data. Whelan
(1986) displayed a c? interpolant of piecewise nonics with c* data, which indeed a special case of the schemes
in Zenisek(1970). Both are comparatively complicated because of the large number of split pieces of the
macrotriangle of the former and the high degree of polynomials and high order of derivatives of the latter. We
can see that the scheme in this paper overcomes these drawbacks to a large extent. With the explicit
formulation of the interpolant with Bernstern-Bezier technique, it's also easy to implement the evaluation of this
interpolation scheme.
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