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This paper research how to chaos control in permanent magnet synchronous motor (PMSM) with disturbance 
base on adaptive back stepping of error compensation. This way can obtain smooth effect of chaos control 
and can remove oscillation in chaos control. Numerical simulations show the effectiveness of the theoretical 
analysis.  

1. Introduction 

With the development of chaos theory, there are many methods to control chaotic system (Ma et al., 2012a; 
2012b, Winsor, 1995). There are linear and nonlinear generalized synchronization (Li et al., 2012), 
generalized synchronization (Wang and Meng, 2007), projective synchronization (Wang and He, 2008) and 
the back stepping nonlinear control, chaotic control of the coupled Logistic map (Wang and Wang, 2008), 
three methods of anti-synchronization of hyperchaotic chen system (Wang and Wang, 2007), hybrid control 
(Elmas and Ustun, 2008) and passivity control (Qi et al., 2005). 
Many methods have been applied to control or suppress chaos in PMSM. For example (Kuo et al., 2007) 
raised controller base on fuzzy slide-mode to control chaotic PMSM. (Li et al., 2010) raised impulsive control 
method to control chaotic PMSM with uncertainties. (Chang, 2010) rose synchronous and control chaotic 
PMSM. (Yu et al., 2011) rose back stepping control way to control the chaotic PMSM system. (Chang et al., 
2011) raised dither signal to control the chaotic PMSM system. However, these methods appear oscillation in 
chaos control which is not satisfying results.  
In control chaos, PMSM appear oscillation due to unknown effect of error dynamics, PMSM oscillation show 
variables is not stable and control process is not stable, which effect control result. Adaptive back stepping 
methods is a kind of adaptive nonlinear control method and can make glably stability and good control results. 
For suppressing oscillation, we apply adaptive back stepping of error compensation to control chaotic PMSM. 
We add an error compensation item to every step virtual control design for compensate the effect of unknown 
error dynamics so that obtain more stable control process. This scheme can eliminate oscillation in course of 
chaos control. This scheme can achieve parameter identification. Finally, the simulation states the 
effectiveness of theoretical analysis.  
This paper is organized as follows. In the next section, we analyse the dynamics analysis of PMSM system. In 
section 3, we introduce adaptive back stepping of error compensation. In section 4, the numerical simulations 
test the effectiveness of theoretical analysis. Finally, some conclusions are drawn in section 5. 

2. PMSM system 

The model of PMSM is showed as follows (Chang et al., 2011), 
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where id, iq and   are variables, iq is q-axis stator current, id is d-axis stator current, and  is rotor angular 
speed. ud is d-axis external voltage, uq is q-axis external voltage, TL are external torque; Ld is  d-axis stator 
inductance, Lq is q-axis stator inductance. y is permanent magnet flus, R1 is stator winding resistance,  is 
the viscous damping coefficient, J is rotor rotational inertia, np is the number of pole-pairs, R1, , J, Lq, Ld, TL 

are all positive.  X=
~,x , t=~,t . 

The system given by (1) can be convertible into non-dimensional zed form which can be expressed as follows:  
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Where y= npy/ R1, = Lq/ R1J, uq =npLqyuq / R1
2,, TL =Lq

2
TL/R1

2
J,  

ud= npLqψrud / R1
2
β, ξ=Lqβ2(Ld-Lq)/LdJnpψr, np=1. 

The system (2) is smooth air-gap when Ld =Lq. To show conveniently, assuming id=
~,i d, iq=

~,i q,= ~, 

,ud=
~,u d, uq=

~,u q. The system given by (2) can be simplified as follows: 
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At present, research the system given by (3) without external force which means PMSM no-load running or 
power disappeared suddenly, namely, ud=uq=TL=0. Then the system given by (3) can be expressed as follows: 
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where x1 stands for id, x2 stands for iq, x3 stands for ω. 
For the system given by (4) 
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Due to σ>0,ΔV<0. So the system given by (4) is a dissipative system.  
The system given by (4) have three equilibrium points: (0,0,0),(γ-1,-(γ-1)

1/2,-(γ-1)
1/2), (γ-1,(γ-1)

1/2,(γ-1)
1/2) in 

theory .  

3. Adaptive back stepping of error compensation 

Transformations of system given by (4) variables as follows, 
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System given by (4) variables are changed base on above transformations, so system with disturbance given 
by (4) can be expressed as follows, 
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where ε is disturbance term . In order to chaos control in system given by (6), the controller u is added to the 
third equation of system given by (6), system given by (6) with controlled can be expressed as follows, 

1 2 1

2 1 2 1 3

3 1 3 3

( )y σ y y

y γy y y y

y y y y u

 


  
    

                                                                                                                                (7) 

Theorem 1: The controller u satisfy, 
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And parameters adaptive law satisfy, 
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Then system given by (7) can realize adaptive back stepping control. 
Proof: Defining three error variables:  
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Where α1 and α2 are virtual control variable, adaptive back stepping of error compensation control include the 
following three steps. 
Step 1: The time derivative of e1 is, 

1 1 2 1 1 2 1 1 2 1( ) ( )e y σ y y σ α e e σe σe σα                                                                              (11) 

Define the Lyapunov function, 
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Then the derivative of V1 is   
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The virtual control variable α1 is defined as follows, 

1 1 1 2 2α p e p e                                                                                                                                             (14) 

Where p1 and p2 are control parameters,0 ≤p1 ＜1  and 0 ≤p2 ＜1. Substitute Eq. (14) in Eq. (13), we obtain, 
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Step 2: The time derivative of e2, we obtain 
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substitute Eq. (11) in Eq. (16), we obtain 
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Where ^,  and ^,   are  and  estimates respectively. ~, =^,  - ,~, = ^,  - ,  ~, and ~, are 
parameters estimation error. 
Defining the Lyapunov function as follows, 
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The time derivative of V2, we obtain 
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A virtual variable α2 is defined as, 
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Where  p3 ∈R, p3 is a control parameter, substitute Eq. (9) and Eq. (20) in Eq. (19), we obtain, 
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Step 3: The time derivative of e3, we obtain  
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Eq. (22) is rewritten as Eq. (23), 
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The derivative of V3, we get Eq.(24), 
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where p3>0. 

Substitute Eq. (8) in Eq. (24), we obtain 2 2 2

3 1 1 1 2 3 3(1 ) ( 1)V σ P e σP e p e      .  

SinceV3≤0, we have e1,e2,e3→0 as t→∞,p1, p2 and p3 are chosen suitable numerical,α1→0 and α2→0as t→
∞, (y1,y2,y3) →(0,0,0). 

4. Numerical simulations 

The initial conditions of system given by (7) are chosen as follows,  

γ=20,σ=2, y1(0)=8,y2(0)=8,y3(0)=12, 
^
,  =

^
,  =10, p1=0.5,p2=0.2,p3=1,ξ=sinθ. 

The simulation results are illustrated in Figures 1, 2 and 3. Figure 1shows that the system given by (7) without 

αcontrol states, y1, y2, y3, occur oscillation. And the system given by (7) without control is chaos. Figure 2 

shows that the system given by (7) with control states, y1, y2, y3 , tend to stable without occurring oscillation. 

Figure 3 shows that the estimated values of parameters 
^
,  and 

^
,   converge to 

^
,  -25 and 

^
,  =4 as t→

∞, respectively.  
It can be observed that adaptive back stepping of error compensation can avoid oscillation in chaos control. 
 

 

Figure 1: Trajectories of system given by (7) states without control. (a) Trajectory of state y1. (b) Trajectory of 

state y2. (c)Trajectory of state y3. 

 

 
Time (sec)                                        Time (sec)                                         Time (sec) 

Figure 2: Trajectories of system given by (7) states with control (a) Trajectory of state y1 (b) Trajectory of state 
y2 (c) Trajectory of state y3 
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Figure 3:  Identification results of 
^
,   and 

^
,   (a) Identification result of 

^
,   (b) Identification result of 

^
,   

5. Conclusions 

This paper come forward adaptive back stepping of error compensation to control chaotic  PMSM. In order to 
control chaotic PMSM and avoid oscillation during chaos control. An error compensation item is developed to 
control chaotic PMSM, which can get smooth effect of control.   
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