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This paper studies the energy storage technology of all-vanadium redox flow battery (VRB), analyzes the 

energy storage mechanism of VRB, builds an energy storage system model for VRB, and validates the validity 

of the relevant parameters of the model, on these basis, a new charge-discharge strategy for battery energy 

storage systems is proposed. The research results show that the multi-VRB energy storage system designed 

in this paper can effectively suppress the maximum power fluctuation in the wind power plant power grid. The 

active power curve in the power grid is smoother than the traditional energy storage system. The power 

converter is designed as a double-closed-loop control, which can control the voltage in the DC bus to a 

greater extent and suppress over-charge and over-discharge. The upper and lower limits of the working 

voltage of the battery energy storage system are respectively set to 610V and 400V. The power distribution of 

the multi-VRB energy storage system can greatly reduce the cycle charge-discharge times of the battery pack 

and increase the working life of the energy storage system. 

1. Introduction 

With the rapid development of society, the traditional fossil energy reserves in the worldwide have been 

declining rapidly every year. The search for a new type of energy that can be recycled without pollution has 

become a research hotspot. Among them, wind power and hydropower generation are currently the major new 

energy utilization methods (Chen and Ding, 2016). Wind power generation and hydropower generation have 

typical volatility and randomness, which are manifested in: uncontrollable power generation volatility; 

uncontrollable power generation output; difficult transmission cost control (Luo and Ooi, 2006; Gjengedal, 

2010; Xie et al., 2011). 

Electrochemical energy storage technology is an effective means to solve the above-mentioned defects. 

Generally, the electrochemical energy storage system is configured on the power supply side or the load side, 

so as to improve the control ability of the power system (Hall and Bain, 2008; Cao and Yang, 2012; Chen and 

Guo, 2015). Electrochemical batteries are one of the most used containers in current energy storage systems. 

They have the advantages of structural modularization, product commercialization, and long cycle life (Nithya 

and Gopukumar, 2015; Muddappa and Kumar, 2014). Researchers have conducted research on 

electrochemical batteries in the energy storage, charge-discharge strategies of renewable energy generation, 

and achieved some results (Chang et al., 2009).  

VRB is a new type of electrochemical battery, which has the great advantage of maintaining original 

capacitance after repeated charging and discharging, now it has been gradually applied to practical power 

engineering (Kear, Shah and Walsh, 2012; Zhao et al., 2009; Huang et al, 2008; Li et al., 2011; Ding et al., 

2013). Researchers studied the advantages of the VRB energy storage system in the charging and 

discharging mechanisms, fluctuating control, smoothing and controlling of electric field frequency fluctuations 

(Shah et al., 2011; Wei et al., 2014). However, the above studies are all under ideal laboratory state, at 

present, there is no literature that has considered constraints of practical engineering applications and the 

safety of external converters (Joerissen et al., 2004). 

This paper studies the energy storage technology of VRB, analyzes the energy storage mechanism of VRB, 
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builds an energy storage system model for VRB and validates the validity of related parameters of the model. 

Based on these, it proposes a new charge-discharge strategy for battery energy storage systems. Finally, the 

dynamic response capabilities of the proposed VRB energy storage system and the traditional constant-power 

energy storage system are compared and analyzed. 

2. Introduction of VRB energy storage system 

Figure 1 shows the composition and working principle of the VRB used in this paper. The system consists of 

positive and negative electrolyte storage tanks, an electric energy inverter, a load, an ion membrane, pressure 

pumps, a battery with positive and negative electrodes, etc. The pressure pumps transport the vanadium 

solutions in the positive and negative electrodes into the battery stack respectively to realize the relevant 

chemical reactions of the battery energy storage. The active materials in the system are recycling all the time 

so as to achieve the charge-discharge process of the VRB. 

In order to facilitate analysis of the electrochemical characteristics of the battery system during charging and 

discharging, the system of Figure 1 is equivalent to Figure 2. The state of charge (SOC) in the figure can be 

expressed as: 

1SOC SOC SOCt t t                                                                                                                                   (1) 
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In the formula, Pstack and Pn are the actual output power and rated output power of the system respectively; 

Tstep is the number of iterations; Trated is the actual working time. 
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Figure 1: Working principle of VRB system  Figure 2: Equivalent circuit of VRB 

In actual work, multiple VRB are connected in series to form a battery pack, thereby increasing its maximum 

working voltage. The voltage of the battery pack can be expressed as: 
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n, T are the number of batteries and battery operating temperature; R and F are relevant constants. The 

internal electrochemistry of the battery will cause the current loss Is in charging and discharging, and the loss 

of the pressure pump in the transmission of the reaction solution Ipump is: 
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3. Electric field power control based on energy storage technology of VRB 

After comprehensive consideration of multiple factors such as economic efficiency, safety, and power 

transmission efficiency of the electrochemical battery energy storage systems, an improved voltage pulse-
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width modulation converter is used as a transit hub for the energy conversion between electrochemical battery 

energy storage system and the large-scale power grid, its schematic diagram is shown in Figure 3. 
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Figure 3: Architecture of wind power plant based on VRB energy storage technology 

The energy conversion channel of the energy storage system and the large-scale power grid is on the DC bus 

side, and the feedforward algorithm is used to control the constant power conversion voltage. 
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Figure 4: AC and DC power converter control system 

AC and DC voltage conversion control system diagram is shown in Figure 4. Real-time adjustment of 

active/reactive power is achieved by controlling the d-axis and q-axis components of the current of AC side. 

On the basis of Figure 4, the multiple AC/DC voltage conversion control system shown as Figure 5 is 

established so as to realize bi-directional transmission between electrochemical battery energy storage 

system and large-scale power grid, and can effectively enhance the safety of the battery energy storage 

system during charge and discharge switching. Define the maximum threshold for charge and discharge: 
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Figure 5: Control architecture of multiple AC and DC voltage converter 

4. Optimal allocation scheme of multi-VRB energy storage 

Figure 6 shows the optimal allocation scheme for the energy storage of multi-VRB. The maximum charging 

power of the electrochemical energy storage system can be expressed as: 

2 2
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The maximum discharge power is: 

2 2
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Through the process of Figure 6, the real-time and accuracy of the system's energy storage can be achieved, 

damage of related equipment caused by overcharge and over-discharge can be avoided. 

5. Verification of simulation model 

The smoothing power fluctuation and overall optimization strategy of the electrochemical energy storage 

system proposed in this paper are validated. A simulation model is established to simulate the operation of the 

battery energy storage system under wind power plant conditions. Figure 7 shows the total output power of 

the smoothing wind power and battery energy storage system. It can be seen from the figure that the 

transmission power of the original wind power is very volatile and the maximum instantaneous amplitude is 0.9 

MW. The maximum instantaneous amplitude after the stabilization of the system designed by this paper has 

dropped to 0.42 MW, which proves the superiority of the design system in this paper. 

Figure 8 shows the change of charge and output power of a level-2 VRB energy storage system. Figure 9 

shows the terminal voltage of each group of the level-2 VRB energy storage system. When the maximum DC 

bus voltage is below 800V, the transmission power of the grid and battery energy storage system can work 

normally. Using the power allocation strategy proposed in this paper, the level-2 VRB energy storage system 

is always performing charge and discharge operations. While using traditional power distribution, the state of 

charge of different battery packs is more volatile. According to the actual calculation results, the upper and 

lower limits of the working voltage of the battery energy storage system are 610V and 400V respectively. 
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Figure 6: Optimal allocation scheme of multi-VRB                  Figure 7: Total output power of smoothing wind  

energy storage                                                                         power and battery energy storage system 
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Figure 8: Change of charge and output power of         Figure 9: Group terminal voltage of level-2 

level-2 VRB energy storage system                             VRB energy storage system 

6. Conclusion 

This paper studies the energy storage technology of VRB, analyzes the energy storage mechanism of VRB, 

builds an energy storage system model for VRB, and validates the validity of the related parameters of the 

model. Based on these, it proposes a new charge-discharge strategy for battery energy storage systems. The 

research conclusions are as follows: 

(1) The multi-VRB energy storage system designed in this paper can effectively suppress the maximum power 

fluctuation in the wind power plant power grid. The active power curve in the power grid is smoother than the 

traditional energy storage system. The power converter is designed as a double-closed-loop control, which 

can control the voltage in the DC bus to a greater extent and suppress overcharge and over-discharge. 

(2) The upper and lower working voltages of the battery energy storage system designed in this paper are 

610V and 400V, respectively. The power distribution of the multi-VRB energy storage system can greatly 

reduce the cycle charge-discharge times of the battery pack and increase the working life of the energy 

storage system. 
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