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The function projective synchronization of chaotic system with a new kind of scaling function is proposed in 
this paper. In general, the scaling function factor of function projective synchronization is a function of the time 
variable. However, in this paper, the scaling function factor we discussed is a function of state variable which 
imply that this kind of synchronization is more complicated. Via modified active control method, the controller 
of the proposed synchronization is designed, and successfully applies to the four dimensional energy 
resources system and a new hyperchaotic Chua system. Numerical simulation is presented to show the 
validity of the controller and the proposed synchronization. 

1. Introduction 

Synchronous control of chaotic systems is widely used in motor control and industrial automation. Since 
Pecora and Carroll(1990) showed that it is possible to synchronize two identical chaotic systems, chaos 
synchronization has been intensively and extensively studied due to its potential applications in many areas. 
Various type of chaos synchronization have been investigated such as complete synchronization(Yu and 
Zhang, 2004), phase synchronization(zhang et al. 2016), lag synchronization(Shahverdiev, 2002), generalized 
synchronization(Kacarev and Parlitz, 1996), and projective synchronization(Mainieri. and Rehacek, 1999), etc. 
Among all kinds of chaos synchronizations, projective synchronization is one of the most noticeable one 
because of the proportionality between its synchronized dynamical states(Zhang and Wang, 2016). This kind 
of synchronization was first reported by Mainieri and Rehacek(1999) in partially linear systems. Recently, the 
concept of function projective synchronization (FPS) is introduced by some researchers(Luo, 2008), where the 
responses of the synchronized dynamical states could be synchronized up to a scaling function factor. In this 
paper, the FPS is investigated between two different chaotic systems with a new kind of scaling function which 
have not been discussed in other papers. Via the modified active control(Li and Zhao, 2011), the function 
projective synchronization between two different chaotic systems is achieved. Then the investigation of a four-
dimensional energy resources system(Sun et al., 2009) and a new hyperchaotic Chua system(Paulo, 2009) 
show the feasibility of the controller.  

2. Function projective synchronization and the modified active control 

Consider a class of nonlinear chaotic system described by 

( )x A x B f x= +  (1) 

where 1 2( , , , )nx x x x Τ=   is the state vector of the system, 
n nA R ×∈  and : n nf R R→  are the linear 

coefficient matrix and nonlinear part of system (1). 
n nB R ×∈  is an constant matrix of the nonlinear function 

( )f x . We assume the response system as follows: 
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( )y C y D g y U= + +  (2) 

where 1 2( , , , )ny y y y Τ=   is the state vector, 
n nC R ×∈  and : n ng R R→  are the linear coefficient 

matrix and nonlinear part of system (2). 
n nD R ×∈  is an constant matrix of the nonlinear function ( )g y . 

1 2( , , , )nU u u u Τ=   is the controller to be determined. Define the error vector as ( )ie x x y= − Γ , 

where ( )ixΓ  is the scaling function factor. Then the error dynamical system can be obtained by subtracting 

the system (2) from system (1) 

( , , ( )) ( ) ( )i i ie E e h x y x x y x U= + Γ − Γ − Γ  (3) 

where 1 2( , , , )ne e e e=   is the error vector, E  is constant matrix, and : n nh R R→  is the nonlinear part 

of system (3).  

Remark 1.  The scaling function ( )ixΓ  can be chosen as many kinds of elementary function such as periodic 

function, polynomial function and etc. ( 1,2, , )ix i n=  is one of the state variables of system (1). 

Definition 1.  For two systems described by system (1) and system (2), we say they are globally function 

projective synchronous with respect to the scaling function factor ( )ixΓ  if there exists a vector controller U  

such that  

lim ( ) lim ( ) ( ) ( ) 0m i st t
e t x t x x t

→∞ →∞
= − Γ =  

which implies that the error dynamic system (3) is globally asymptotically stable. □ 

Then we introduce the summary of modified active control to design the controller U . 

Definition 2.  (see(Li and Zhao, 2011))Define the controller U  as  

1

1

( )

( ) ( ( , , ( )) ( ) )

a b

a i

b i i i

U U U
U x M e
U x h x y x x y

−

−

= +
 = Γ
 = Γ Γ − Γ 

 (4) 

where ( )ixΓ  is the scaling function factor, M  is a constant matrix to be determined later. □ 

Substituting the controller (4) into (3), the error system becomes  

( )e E M e= −  (5) 

To make the system (5) asymptotically stable at the origin, we introduce the following lemmas. 

Lemma 1.  (See (Robinson, 2004)) Let 
*x  be a fixed point of the equation ( )x F x= , if exist a function V  

which satisfies (i) 
*( ) ( )V x V x>  for all x  in a neighborhood U  of 

*x  but distinct from 
*x  and (ii) 

( ) 0V x <  for all x  in U  but distinct from 
*x . Then, 

*x  is asymptotically stable. 

Lemma 2.  (See (Hu et al., 2010)) The dynamic system 

1 11 11 1 12 1 1

2 2 21 2

1

n

n n n nnn n

x xk a k a k a
x k a x

k a k ax x

    
    
    =
    
    

    

 
 

   


 (6) 

if satisfies the following conditions 

(1) ija R∀ ∈ ; (2) ( )ij jia a i j= − ≠ ; (3) iia ≤0 (all iia  are not equal to zero); (4) 0ik∀ >  
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then the system asymptotically converge to zero. □ 
Theorem 1.  For two systems described by system (1) and system (2), we say they are globally function 

projective synchronous under the controller (4) provided there is a real constant matrix M , which makes the 

matrix E M−  satisfies the conditions in Lemma 2.  

Proof.  If the matrix E M−  satisfies the conditions in Lemma 2, then the fix point of system (5) is 
asymptotically stable. Because the system (5) is linear system, the origin is the fix point which means 

lim lim ( ) 0it t
e x x y

→∞ →∞
= − Γ =  (7) 

According to Definition 1, the globally generalized projective synchronization between system (1) and system 
(2) is achieved. □ 
According to Theorem 1, we know that the synchronization between system (1) and (2) can be transformed 

into a problem of how to choose the matrix M . 

3. FPS between two different systems 

Recently, Sun and Tian established a new four-dimensional energy resources system is obtained(Sun et al., 
2009). The system can be described as 

1 1 1 1 2 1 1 3 1

1 1 1 2 1 3 1 1 1

1 1 1 2 1 3

1 1 1 2 1

(1 / ) ( )
[ ( )]

( )

x a x x M a y z d
y b y b z b x N x z
z c z c x c

d x d

ω

ω ω

= − − + −
 = − − + − −
 = −
 = −






 (8) 

 when the parameters 1 0.09a = , 2 0.15a = , 1 0.06b = , 2 0.082b = , 3 0.07b = , 1 0.2c = , 2 0.5c = , 

3 0.4c = , 1 0.1d = , 2 0.06d = , 3 0.08d = , 1.8M = , 1N = . In(Paulo, 2009), a new four-dimensional 

hyperchaotic Chua system was reported. Take the system as the response system and write it as 

3
2 1 2 3 2 4 2 1

2 2 2 2 2

2 2 2 2 3

2 2 2 2 4

( (1 ) )x y a x c x u
y x y z u
z y z u

s x y z u

α

β γ ω
ω

 = − − + +
 = − + +


= − − + +
 = − + +






 (9) 

where 1u , 2u , 3u , 4u  are controllers to be designed. Define the synchronization error vectors as 

1 1 2( )e x X x= − Γ , 2 1 2( )e y X y= − Γ , 3 1 2( )e z X z= − Γ , 4 1 2( )e Xω ω= − Γ  

( )XΓ  is the scaling function factor. X  can be chosen as any state variable of system (8). Then we can 

obtain the following error dynamic system as follows 

1 11 2

2 2

3 3

4 4

0 0
1 1 1 0
0 0 0

0 0 0

e ea a
e e
e e
e es

γ

−    
    −    = +
    −
    −    






2 3
1 1 4 1 2 2 1 2 2 1 3 1 1 1 1 3 2

2
1 1 2 1 3 1 3 1 3 1 1

1 3 1 1 2 1 1 2 2

1 1 2 1 2 2

( ) ( ) ( ) ( ) / ( )

(1 ) ( 1) ( 1) ( )
( ) ( ) ( )
( ) ( )

c a X x a X y a z d a x M X a x
b y b z b N x b x b x z X U
c c z c c x z X y X

d s x d X y z

α α α ω α

γ β ω
ω

 + + Γ − + Γ − − − +Γ
 

− − + + − − + −Γ − + +Γ −Γ 
+ − −Γ  

 

(10) 
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According to Definition 2, we assume that  

1( )aU X Pe−= Γ  (11) 

where P  is a constant matrix to be determined, 

2 3
1 1 4 1 2 2 1 2 2 1 3 1 1 1 1 3 2

2
1 1 1 2 1 3 1 3 1 3 1 1

1 3 1 1 2 1 1 2 2

1 1 2 1 2 2

( ) ( ) ( ) ( ) / ( )

(1 ) ( 1) ( 1)( )
( ) ( ) ( )
( ) ( )

b

c a X x a X y a z d a x M X a x
b y b z b N x b x b x zU X
c c z c c x z X y X

d s x d X y z

α α α ω α

γ β ω
ω

−

 + + Γ − + Γ − − − +Γ
 

− − + + − − + =Γ  − + +Γ −Γ 
+ − −Γ  

 

−Γ ( )X 1− ( 2x , 2y , 2z , 2ω ) Τ
 

(12) 

Then the controller can be described as  

a bU U U= +  (13) 

Let  

1 2 0 0
1 1 1 0
0 0 0

0 0 0

a a

E

s
γ

− 
 − =
 −
 − 

 

Substituting the controller (13) into the system (10) yield  

( )e E P e= −  (14) 

According to Lemma 2, we choose the matrix P  as 

1 2
1 1 1

1 1 4

3
3

1 1( ) ( ) 0 ( )

0 0 1 0
10 0 ( ) 0

0 0 0 1

a a sk k k
k k k

k
k
γ

+ − + − 
 
 
 
 − + 
 
 
 

 

Substituting the matrix P  into system (14), we obtained the following new error system 

1
41 1

2 2

3 3

4 4
4

4

1 1 0

1 1 0 0
0 0 1 0

0 0 1

sk
ke e

e e
e e
e esk

k

 − −        −    =     −     −   − 
 






 (15) 

Let 1 10k = , 2 20k = , 3 20k =  and 4 50k = , then the system (15) satisfies the Theorem 1, which implies 

that the system (8) and (9) are globally fucntion projective synchronized with respect to the scaling function 

factor ( )XΓ . 
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Fig. 1 Time response of synchronization errors 

 
 Fig.2 The synchronization result of state variables 

4. Numerical simulation 

In what follows we would like to use the numerical simulation to verify the validity of the result obtained in last 

section. The initial values of the drive system (8) and response system (9) are taken as 1(0) 0.82x = , 

1(0) 0.29y = , 1(0) 0.48z = , 1(0) 0.1ω = , 2 (0) 0.0x = , 2 (0) 0.1y = , 2 (0) 0.3z = , 2 (0) 0.4ω = , 

respectively. The scaling function factor ( )XΓ  is chosen as  

1 1 2( ) sin( )X d x dΓ = +  (16) 

where 1x  is one of the state variable of system (8). So we can get that 

1 1 1( ) cos( )X d x xΓ =   (17) 

Substituting equation (16) and (17) into the controller (13) with 1 3d =  and 2 20d = , then we can obtain the 

simulation result. Fig. 1 displays the time response of synchronization errors. As expected, the errors 
converge to the zero as time goes to infinite. Fig. 2 shows the state variables of drive system and response 
system synchronize to the scaling function. In general, the scaling function factor of FPS is a function of the 
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time variable. However, in this paper, the scaling function factor of FPS we discussed is a function of state 
variable which imply that this kind of scaling function factor is complicated than the general one. 

5. Conclusions 

The function projective synchronization between two different chaotic systems has been investigated. A 
modified active control for achieving the synchronization is proposed. Then the investigation of a four-
dimensional energy resources system and a new hyperchaotic Chua system show the feasibility of the 
controller. In numerical simulation, we discuss the FPS with a new kind of scaling function which has not been 
discussed in other papers. The simulation results are shown in corresponding figures which imply that the 
synchronization we discussed in this paper is feasible. 
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