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Plug-Flow Reactors (PFR) belong to frequently used technological plants which exhibit unpleasant behavior. 

The traditional PID control structure in these cases may fail or demonstrate an unacceptable behavior. The 

paper brings another approach of control design called robust. It means that the controller is fixed but resistant 

to the uncertainty of the controlled plant. The studied approach considers a linear system with parametric 

uncertainty, which covers a family of all feasible plants. A controller with fix parameters is then designed so that 

for all possible plants, the acceptable stable control behavior is obtained. The structure of the control law is in 

two degree of freedom (2DOF) which offers better control responses than classical structures. All calculations 

and simulations of mathematical models and control responses were performed in the Matlab and Simulink 

environment.  

1. Introduction 

Various kinds of chemical reactors play a fundamental role in the chemical and biochemical industry. Usually 

they have nonlinear behavior that causes difficulties in the control of processes inside the reactors. Other 

unpleasant property can be found in the complexity of such processes with heat and kinetic mechanism, lot of 

variables and properties that result in a non-linear mathematical description. This unpleasant property can be 

overcome with the linearization and simplifications that reduce the intricacy of the system. On the other hand, 

this simplification can result in an inaccurate description of the system. As a consequence, the conventional 

linear control with fixed parameters can be questionable or unacceptable. The solution should be found in so-

called advanced control approaches like Adaptive, Robust, Fuzzy or Artificial Intelligent methods.  

The utilization of adaptive (e.g., self-tuning) schemes brings more difficult, clumsy and time-consuming 

computations (Åström and Wittenmark, 2008). The control design using a hybrid adaptive control principle was 

used in Vojtesek et al. (2017) where the originally non-linear system was represented by the external linear 

model with recursively identified parameters, and the pole-placement method adjustment principle was applied. 

A practically favored approach to overcome the loss of the model accuracy, compensated by its structure 

simplicity, consists in the utilization of a model with uncertainty. There are more ways of incorporating the 

uncertainty into the mathematical model available as in Bhattacharyya (2017). The popular group of uncertain 

systems is known as the systems with parametric uncertainty, which means the model structure is fixed, but its 

parameters can vary, typically within some prescribed intervals. The natural task is to find a controller, called a 

robust controller, that ensures the preserving some important closed-loop properties (e.g. stability) for the whole 

assumed family of controlled plants as in Barmish (1994). 

The main aim of this paper is in the design a robustly stabilizing controller for the PFR with the cooling in the 

jacket, modelled as a system with parametric uncertainty, using the algebraic approach. In Section 2, a 

mathematical model of PFR is described. Section 3 outlines principles of uncertainty, robust control and control 

design in the ring of proper and stable rational functions (RPS). Section 4 is devoted to simulation example and 

discussion of results. Section 5 offers some concluding remarks. 
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2. Plug-flow reactor 

The studied simulation model is a tubular chemical reactor with the ideal plug-flow chemical reaction with a 

simple exothermic consecutive reaction A → B → C in the liquid phase and with cooling in the jacket. These 

types of reactors are called PFRs. The mathematical description of all quantities and relations among them is 

quite complex, and some simplifications are necessary. Heat losses and conduction along the metal wall of the 

pipes are neglected, and the heat transfer through the wall is consequential for the dynamic study. All densities, 

heat capacities and heat transfer coefficients are expected to be constant. Two types of cooling can be used in 

the jacket – co-current (solid black line) and counter-current cooling (red dashed line). The differences between 

them are displayed in Figure 1, and they will be investigated in static and dynamic analyses. 

 

 

Figure 1: PFR with co-current and counter-current cooling in the jacket – the main pipe 

The jacket has diameter d3, and the outer diameter of each pipe is d2, while the inner diameter is denoted as d1 

– see Figure 2. 

 

 

Figure 2: PFR – one pipe 

The mathematical description of the system is based on material and heat balances inside the reactor. The 

mathematical model is then described by a set of Partial Differential Equations (PDE): 
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The last PDE for co-current cooling and counter-current cooling (opposite flow of the cooling medium)  are 

denoted as 
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where T is the temperature, d represents diameters, ρ are densities, cp means specific heat capacities, U stands 

for the heat transfer coefficients, n1 is a number of tubes and L represents the length of the reactor. Index (•)r 

means the reaction compound, (•)w is for the metal wall of the pipes and (•)c for the cooling liquid. Variables vr 

and vc are fluid velocities of the reactant and cooling liquid as: 
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where q is flow rates and f are constants. The reaction velocities, ki, in Eqs(1), (3) are non-linear functions of 

temperature computed via the Arrhenius law: 
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where k0j represents pre-exponential factors, E means activation energies and R is the gas constant. hr in the 

third equation is the reaction heat computed as 

1 1 2 2r A Bh h k c h k c=   +    (5) 

where hj is used for reaction enthalpies. 

The mathematical model given by Eq(1) to Eq(5) shows that this plant is a nonlinear system with continuously 

distributed parameters. Strong nonlinearity can be found in Eq(4), and the system is with distributed parameters 

because of the presence of the PDE where the state variable is related not only to the time variable, t, but the 

space varibable, z, too. The initial conditions are cA(z,0) = cA
s(z), cB(z,0) = cB

s(z), Tr(z,0) = Tr
s(z), Tw(z,0) = Tw

s(z) 

and Tc(z,0) = Tc
s(z) and boundary conditions cA(0,t) = cA0(t),cB(0,t) = cB0(t) = 0, Tr(0,t) = Tr0(t), Tc(0,t) = Tc0(t) for 

the co-current cooling and Tc(0,t) = Tc0(t) for the counter-current cooling. Fixed parameters of PFR (see Dostál 

et al., 1996) are displayed in Table 1. 

Table 1: Parameters of PFR 

Name of the parameter Symbol and value of the parameter 

Inner diameter of the pipe 

Outer diameter of the pipe 

Diameter of the jacket 

Number of pipes 

Length of the reactor 

Density of the reactant 

Density of the pipe’s wall 

Density of the cooling liquid 

Heat capacity of the reactant 

Heat capacity of the pipe’s wall 

Heat capacity of the cooling liquid 

Heat transfer coefficient: reactant-wall 

Heat transfer coefficient: wall-cooling liquid 

Pre-exponential factor for reaction 1 

Pre-exponential factor for reaction 2 

Activation energy of reaction 1 to R 

Activation energy of reaction 2 to R 

Enthalpy of reaction 1 

Enthalpy of reaction 2 

Input concentration of compound A 

Input temperature of the reactant 

Input temperature of the cooling liquid 

d1 = 0.02 m 

d2 = 0.024 m 

d3 = 1 m 

n1 = 1200 

L = 6 m 

ρr = 985 kg.m3 

ρw = 7,800 kg.m3 

ρc = 998 kg.m3 

cpr = 4.05 kJ.kg-1.K-1 

cpw = 0.71 kJ.kg-1.K-1 

cpc = 4.18 kJ.kg-1.K-1 

U1 = 2.8 kJ.m-2.K-1.s-1 

U2 = 2.56 kJ.m-2.K-1.s-1 

k10 = 5.61×1016 s-1 

k20 = 1.128×1016 s-1 

E1/R = 13,477 K 

E2/R = 15,290 K 

h1 = 5.8×104 kJ.kmol-1 

h2 = 1.8×104 kJ.kmol-1 

cA0
s = 2.85 kmol.m-3 

Tr0
s = 323 K 

Tc0
s = 293 K 

 

This system has five state variables – concentrations cA(z,t), cB(z,t) and temperatures Tr(z,t), Tw(z,t) and Tc(z,t).  

Input and output variables are defined as 
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Where the output variable is the mean variable of reactive temperature Tr. 
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3. Robust control 

Parametric uncertainty of models is outlined in Section 3.1, while the control synthesis is described in Section 

3.2. Section 3.3 deals with the basic facts about robust stability.  

3.1 Models with parametric uncertainty 

Systems with parametric uncertainty represent an effective and popular way of considering the uncertainty in 

the mathematical model of a real plant, as considered in Matušů and Prokop (2013). The utilization of such 

models supposes known structure (and order) of the transfer function but not precise knowledge of real 

parameters, which can be bounded by intervals with minimal and maximal possible values. They can be 

described by a ratio of two polynomials (transfer function) G(s,q) = b(s,q)/a(s,q), where b(s,q) and a(s,q) denote 

polynomials in s (Laplace transform) with coefficients depending on q, which is a vector of real uncertain 

parameters. Typically, this vector is confined by some uncertainty bounding set which is generally a ball in some 

appropriate norm. The combination of the uncertain system with an uncertainty bounding set gives the so-called 

family of systems as in Barmish (1994). A uniquel and frequent case of a system with parametric uncertainty is 

interval plants. Its parameters can vary independently on each other within given bounds, i.e.: 𝑎𝑖 ∈ [𝑎𝑖
−; 𝑎𝑖

+], 𝑏𝑖 ∈

[𝑏𝑖
−; 𝑏𝑖

+], where 𝑏𝑖
−, 𝑏𝑖

+, 𝑎𝑖
−, 𝑎𝑖

+ represent lower and upper limits for parameters of numerator and denominator. 

3.2 Control structure and design  

For the control design, the 2DOF closed-loop system with separated feedback and feedforward parts of the 

controller was chosen, see Kučera (1993), and the control law is governed by: 

( ) ( ) ( ) ( ) ( ) ( )P s U s R s W s Q s Y s= −  (7) 

The transfer functions G(s) =B(s)/A(s), Cb(s)=Q(s)/P(s), and Cf(s)=R(s)/Q(s) represent the controlled plant, 

feedback part of the controller, and feedforward part of the controller and the signals w(s), n(s), and v(s) are 

reference, load disturbance, and disturbance signal. The traditional (one degree of freedom) feedback system 

is obtained by R=Q. However, there are many relevant evidence that the feedforward part brings positive 

improvements in control responses, as considered in the work of Gorez, (2003). The control synthesis itself is 

based on the algebraic ideas of Kučera (1993). The specific tuning rules have been developed and analyzed by 

Prokop and Corriou (1997). The controller tuning rules for the case of law order controlled plant under the 

assumption of either pure reference tracking problem or reference tracking and load disturbance rejection 

together have been already studied by Matušů and Prokop (2013). The control design technique supposes the 

description of linear systems using RPS. The conversion from the ring of polynomials to RPS can be performed 

very simply (see e.g. Prokop and Corriou, 1997) according to: 

 
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The parameter 0m   will be later used as a controller-tuning knob. The value of the tuning knob has important 

influence on the control behavior of control responses. The algebraic analysis, see e.g. Prokop and Corriou, 

(1997) or Matušů and Prokop (2014) leads to the first Diophantine equation: 

( ) ( ) ( ) ( ) 1A s P s B s Q s+ =  (9) 

with a general solution P(s)=Po(s)+B(s)T(s), Q(s)=Qo(s)-A(s)T(s), where T(s) is an arbitrary member of  RPS and 

the pair Po(s), Qo(s) represents any particular solution of Eq(9). This principle is known as Youla – Kučera 

parameterization of all stabilizing controllers. All possible solutions of the Diophantine equation give all 

stabilizing feedback controllers. Since the feedback part of the controller is responsible not only for stabilization 

but also for disturbance rejection, the convenient controller from the set of all stabilizing ones can be chosen 

based on divisibility conditions. The requirement of the reference tracking is obtained by the second Diophantine 

equation (Fw is the reference denominator) (Kučera 1993):  

( ) ( ) ( ) ( ) 1wF s Z s B s R s+ =  (10) 

3.3 Robust stability 

Stability of the feedback loop is the crucial requirement in all control applications. Naturally, the feedback loop 

can be stabilized even if the controlled and/or control systems are unstable. In the case of uncertainty of 

controlled plants, robust stability means that not only one fixed closed-loop system is stable but also the whole 

family of closed-loop control systems is ensured to be stable. Since the stability of linear systems can be 

investigated using the stability of its characteristic polynomials, the main object of interest from the robust stability 
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viewpoint is the uncertain continuous-time closed-loop characteristic polynomial p(s,q)= I(q) si. Details can be 

found in the work of Bhattacharyya (2017). 

However, there is a universal graphical approach applicable for all, even in complicated cases. It is known as 

the value set concept in combination with the zero exclusion condition as considered in the work of Matušů and 

Prokop (2011). In other words, p(j𝜔,Q) is the image of Q under p(j𝜔, .). Practical construction of the value sets 

then means to substitute s for j𝜔, fix 𝜔 and let the vector of uncertain parameters q range over the set Q. The 

zero exclusion condition for Hurwitz stability of a family of continuous-time polynomials says (Barmish, 1994):  

Assume invariant degree of polynomials in the family, pathwise connected uncertainty bounding set Q, 

continuous coefficient functions 𝜌𝑖(q) for i = 0,1,2,K,n and at least one stable member p(s,𝑞𝑜). The family P is 

robustly stable if and only if the complex plane origin is excluded from the value set p(j𝜔,Q) at all frequencies 

𝜔 ≥ 0, that is P is robustly stable if and only if 0 ∉ p(j𝜔,Q), ∀𝜔 ≥ 0. 

4. Simulations and discussion 

4.1 Simulation example and results 

The PFR controlled object was identified as a second-order system with nominal parameters: 

( )
( )

( )

4 5
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2 2 2 5
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The intervals for uncertain perturbations are obtained by a deeper analysis of the dynamic behavior, and they 

result in ± 10 % from the nominal ones. 

The first 2DOF controller has been designed for the nominal plant and the tuning parameter m = 0.005. The 

feedback and feedforward parts of the controller are: 
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The second 2DOF controller is generated by using tuning parameter m = 0.02 in the form: 

2 2
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2 2
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Figure 3 shows the output controlled variables for both tuning parameters. The red lines depict the nominal plant 

responses, and black shadows are responses for the whole uncertain family (± 10 %). The load disturbance n 

= 1 was injected in the time t = 6,000 seconds, and it is evident that no permanent error is observed.   

4.2 Analysis and discussion  

Many simulations were performed in the Simulink environment, and Figure 3 represents only two of them. 

Simulation results proved that the fix robust controller could be designed for a wide family of interval systems. 

The choice of the tuning parameter m > 0 was found empirically and experimentally. Until now, there is no logical 

way how to obtain the optimal value (Prokop and Corriou, 1997). To verify the practical usability of both designed 

controllers, they were applied not only to the linearized model, but also to the original nonlinear model of PFR. 

The control results for this non-linear case are shown and mutually compared in Figure 3. The left side 

corresponds to the value m = 0.005, while the right side represents the value m = 0.02. All simulations confirm 

that lower values of the parameter m give slower responses of the control behaviour. The price for the faster 

response is the more aggressive (higher) control inputs. It demonstrates the robust stability of both designed 

control systems. 
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Figure 3: Set of output controlled variables for (a) m=0.005 and (b) m=0.02 

5. Conclusions 

The paper deals with some applications of continuous-time 2DOF robust control algorithms designed in RPS to 

systems with parametric uncertainty. The approach brings two novel features. The first one consists in the 

synthesis method, which utilizes the graphical approach to robust stability analysis based on the value set 

concept and the zero exclusion condition. The second feature is in the application of the 2DOF structure of the 

feedback loop. Two designed robust controllers were applied to control of uncertain systems obtained from a 

non-linear PFR. The future work will be focused on the control of non-linear plants and analysis. 
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