TY - JOUR AU - Portarapillo, Maria AU - Aronne, Antonio AU - Di Benedetto, Almerinda AU - Imparato, Claudio AU - Landi, Gianluca AU - Luciani, Giuseppina PY - 2019/05/31 Y2 - 2024/03/28 TI - Syngas Production Through H2o/co2 Thermochemical Splitting JF - Chemical Engineering Transactions VL - 74 SP - 43-48 SE - Research Articles DO - 10.3303/CET1974008 UR - https://www.cetjournal.it/index.php/cet/article/view/CET1974008 AB - CO2 and H2O can be energy-upgraded through solar thermochemical cycles. Suitable redox materials are reduced in a solar reactor at high temperature (above 1300-1400°C) and afterwards re-oxidised by CO2 and/or H2O flow, thus producing CO and/or H2. Ceria was recognised as one of the most interesting materials for this process. However, high reduction temperature, low re-oxidation kinetics as well as low stability hindered its practical application. In this work, the redox properties of Ce0.75Zr0.25O2 system prepared by hydrothermal synthesis were compared with those of a co-precipitated sample with the same nominal composition used as reference. Samples were characterised by XRD and N2 physisorption; their self-reducibility and CO2 splitting activity were tested in a thermogravimetric balance, while H2O splitting properties were studied in an ad hoc fixed bed reactor on H2 pre-reduced samples. Obtained results proved that the material prepared by hydrothermal synthesis is characterised by both improved reducibility and splitting activity. ER -