Effect of the Relative Amount of Ingredients on the Thermal Properties of Semolina Doughs
Fanari, Fabio
Carboni, Gianluca
Grosso, Massimiliano
Desogus, Francesco
Download PDF

How to Cite

Fanari F., Carboni G., Grosso M., Desogus F., 2019, Effect of the Relative Amount of Ingredients on the Thermal Properties of Semolina Doughs, Chemical Engineering Transactions, 76, 1207-1212.
Download PDF


The thermal properties of doughs with a different relative amount of ingredients were investigated using Thermogravimetric Analysis (TGA). The doughs were prepared to mix water, semolina, yeast, and salt in different proportions. The gelatinized flour fraction plays an important role in the thermal properties’ definition, while the water amount influences the development of the dough network and consequently the starch gelatinization phenomena. The amount of yeast and salt influences the dough network force and consequently, the thermal properties. In such a way, it was possible to find some information on the relationship between the dough characteristics and the thermogravimetric analysis outputs. The study is devoted to acquiring deeper knowledge about the thermophysical characteristics of doughs in the breadmaking industrial processes, and about their changes during the different process steps, when the relative amount of ingredients changes. This could help to improve the controllability of the breadmaking plants and their energetic performances, and in particular the efficiency of “pani carasau” manufacturing, a typical toasted and high-quality Sardinian bread. Currently, in industrial productions, large amounts of it are lost because off-specification and it is not possible to prevent this, since the bread characteristics can be verified after baking, which is high energy consuming. Consequently, a deeper knowledge of the dough properties could help to decrease the amounts of off-specification products, resulting in a much more energy efficient and sustainable process.
Download PDF